In vivo anti-inflammatory, analgesic, and hepatoprotective potencies and acute toxicity of chrysanthenone and thymol

Authors

  • Dr. Khadija Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University (USMBA), Fez B.P. 1796, Morocco Author
  • Meryem Sligoua Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Technical Health, Marrakech, Morocco Author
  • Mohamed Chebaibi Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco Author
  • Dalila Bousta National Agency of Medicinal and Aromatic plants; Taounate, Morocco Author

DOI:

https://doi.org/10.69998/d0s2s839

Keywords:

Chrysanthenone, thymol, lipoxygenase, cyclooxygenase, hepatoprotective activity, Molecular docking

Abstract

Thymol and chrysanthenone are two bioactive compounds primarily found in the essential oils of Thymus algeriensis and Artemisia herba-alba, respectively. This study aimed to evaluate the anti-inflammatory, analgesic, and hepatoprotective potential of thymol and chrysanthenone, individually and in combination, and assess their acute toxicity. Anti-inflammatory activity was evaluated by measuring the severity of hind paw edema in rats following carrageenan injection, a standard inflammation model. Analgesic activity was assessed using the writhing test, which measures the number of abdominal constrictions. In silico evaluations of anti-inflammatory and analgesic activities were performed using the Maestro 12.5 software from the Schrödinger suite. Hepatoprotective effects were tested against carbon tetrachloride (CCl₄)-induced hepatotoxicity in albino rats. Additionally, serum levels of aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) were measured, and liver tissue from treated animals was histologically examined. The results demonstrated that the oral administration of the thymol/chrysanthenone combination at a dose of 150 mg/kg significantly reduced inflammation, outperforming 1% Diclofenac with maximum edema reductions of 97 ± 3.7% and 88.6 ± 0.81%, respectively. In the writhing test, rats treated with the combination exhibited significantly fewer abdominal contractions (40 ± 0.40) compared to those treated with the serotonin–norepinephrine reuptake inhibitor Tramadol (42.00 ± 2.70), a drug commonly used to manage moderate to severe pain. Molecular docking studies revealed that thymol exhibited strong binding affinities in the active sites of lipoxygenase and cyclooxygenase, with docking scores of –4.805 kcal/mol and –7.821 kcal/mol, respectively. Chrysanthenone also demonstrated favorable binding, with scores of –4.082 kcal/mol and –6.938 kcal/mol at the same targets. The thymol/chrysanthenone combination showed marked hepatoprotective effects, evidenced by the normalization of ASAT and ALAT levels and the prevention of histological liver damage following CCl₄ intoxication. Acute toxicity testing revealed no signs of toxicity, with an LD₅₀ greater than 150 mg/kg.

Downloads

Download data is not yet available.

References

Amarti F, Satrani B, Ghanmi M, Farah A, Aafi A, Lotfi. A, El Ajjouri M & Chaouch A (2010) Composition chimique et activité antimicrobienne des huiles essentielles de Thymus algeriensis et Thymus ciliatus du Maroc. Biotechnol. Agron. Soc. Environ 14 (1):141- 148 https://popups.uliege.be/1780-4507/index.php/base/gateway/index.php?id=5218

Amrati F.E-Z et al (2023). Evaluation of the toxicity of Caralluma europaea (CE) extracts and their effects on apoptosis and chemoresistance in pancreatic cancer cells. Journal of Biomolecular Structure and Dynamics 41(17):8517-8534 https://doi.org/10.1080/07391102.2022.2135595

Bagheri G, Mirzaei M, Mehrabi R, & Sharifi‐Rad J (2016). Cytotoxic and antioxidant activities of Alstonia scholaris, Alstonia venenata and Moringaoleifera plants from India-Jundishapur. Journal of Natural Pharmaceutical Products 11:3 https://doi.org/10.17795/jjnpp-31129

Beer A M, Lukanov J and Sagorchev P (2007). Effect of thymol on the spontaneous contractile activity of the smooth muscles. Phytomedicine 14: 65–69 http://doi.org/10.1016/j.phymed.2006.11.010

Benelli G and Mehlhorn H (2016). Declining Malaria, Rising of Dengue and Zika Virus: Insights for Mosquito Vector Control. Parasitology Research 115:1747-1754 https://doi.org/10.1007/s00436-016-4971-z

Bokhtia R M et al., (2023). New NSAID Conjugates as Potent and Selective COX-2 Inhibitors: Synthesis, Molecular Modeling and Biological Investigation. Molecules 28(4):1945 https://doi.org/10.3390/molecules28041945

Bourkhiss M, Hnach M, Lakhlifi T, Boughdad A, Farah A, Satrani B (2011). Effet de l’Age et du Stade Végétatif sur la Teneur et la Composition Chimique des Huiles Essentielles de Thuya de Berbère. Les technologies de laboratoire 6(23) : 64-68 https://doi.org/10.34874/PRSM.teclab-vol6iss23.419

Braga P C et al (2006). Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology 77(3):130-136 https://doi.org/10.1159/000093790

Chamanara M, Abdollahi A, Rezayat S M, Ghazi-Khansari M, Dehpour A, Nassireslami E et al (2019). Thymol Reduces Acetic Acid-Induced Inflammatory Response through Inhibition of NF-kBSignaling Pathway in Rat colon Tissue. Inflammopharmacol 27 (6):wx1275–1283. http://doi.org/10.1007/s10787-019-00583-8

Chelucci R, Dutra L, Lopes Pires M, de Melo T, Bosquesi P, Chung M, dos Santos J (2014). Antiplatelet and Antithrombotic Activities of Non-Steroidal Anti-Inflammatory Drugs Containing an N-Acyl Hydrazone Subunit. Molecules 19, 2089–2099 https://doi.org/10.3390/molecules19022089

Da Costa J S, de Figueiredo R O, Setzer W N, da Silva J K R, Maia J G S, Figueiredo P L B (2021). Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Molecules 26: 965 https://doi.org/10.3390/molecules26040965

Dob T, Darhmane D, Benabdelkader T & Chelgoum Tahar C (2006). Studies on the essential oils and antimicrobial activity of Thymus algeriensis Boiss. & Reut. Int. J. Aromath 16 (2) : 95-100

El Abdali Y et al (2023). Essential oils of Origanum compactum Benth: Chemical characterization, in vitro, in silico, antioxidant, and antibacterial activities Open Chemistry 21(1):20220282 https://doi.org/10.1515/chem-2022-0282

El Ouahdani K, Es-safi I, Mechchate H, Al-zahrani M, Qurtam A.A, Aleissa M, Bari A & Bousta D (2021). Thymus algeriensis and Artemisia herba-alba Essential Oils: Chemical Analysis, Antioxidant Potential and In Vivo Anti-Inflammatory, Analgesic Activities, and Acute Toxicity; Molecules 26:6780. https://doi.org/10.3390/molecules26226780

El Ouahdani K, Es-safi I, Sligoua M, Al Kamaly O, Anakhli A M, Bousta D (2023). Thymus algeriensis and Artemisia herba-alba essential oils: Cytotoxicity, Antibacterial and antifungal activities and subacute toxicity. Journal of Biological Regulators and homeostatic agents 37 (9): 4613-4622 https://doi.org/10.23812/j.biol.regul.homeost.agents.20233709.451

Eunkung K, Youngshim C, Jihee J and Taesun P (2013). Carvacrol protects against hepatic steatosis in Mice Fed a hight-fat diet by enhancing SIRT1-AMPK signaling. Evid based complentalternat med 290104 https://doi.org/10.1155/2013/290104

Fachini‐Queiroz F C, Kummer R, Estevão‐Silva C F, Carvalho M D, Cunha J M, Grespan R, Cuman R (2012). Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evidence‐Based Complementary and AlternativeMedicine 657026 https://doi.org/10.1155/2012/657026

Falcone P et al (2005). study on the antimicrobial activity of thymol intended as a natural preservative. Journal of food protection 68(8):1664-1670 https://doi.org/10.4315/0362-028X-68.8.1664

Gavliakova S, Biringerova Z, Buday T, Brozmanova M., Calkovsky, V., Poliacek, I. and Plevkova, J. Antitussive (2013). Effects of Nasal Thymol Challenges in Healthy Volunteers. Respiratory Physiology & Neurobiology. 187, 104-107. https://doi.org/10.1016/j.resp.2013.02.011

Ghori S S et al (2016). Evaluation of analgesic and anti-inflammatory activities of formulation containing camphor, menthol and thymol. Int. J. Pharm. Pharm. Sci 8:271-274

Hernández-Pérez M, Rabanal R M (2002). Evaluation of the Anti inflammatory and Analgesic Activity of Sideritis CanariensisVar. Pannosa in Mice. J. Ethnopharmacol 81:43–47 https://doi.org/10.1016/S0378-8741(02)00033-8

Jordan W, Van Barneveld H, Gerlich O, Kleine-Boymann M and Ullrich J (1991). “Phenol,” in Ullmanns Encyclopedia of Industrial Chemistry, 5th Edn, Vol. A 19, eds B. Elvers, S. Hawkins, and G. Schulz (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 299–312.

Kintzios S (2002). Oregano: The genera Origanum and Lippia (medicinal and aromatic plants—industrial profiles). London, England: Taylor & Francis

Klein A, Eliakim R (2010). Non-Steroidal Anti-Inflammatory Drugs and Inflammatory Bowel Disease. Pharmaceuticals 3:1084–1092 https://doi.org/10.3390/ph3041084

Ku C M and Lin J Y. (2013). Anti-inflammatory effects of 27 selected terpenoids compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem 141:1104–1113. http://doi.org/10.1016/j. foodchem.2013.04.044

Kyung-Mi C & Gun-Hee K (2009). Comparative Chemical Composition of Domestic and Imported Chrysanthemum indicum L. Flower Oils. Food Sci. Biotechnol Vol. 18, No. 5, pp. 1288-1292.

Lafraxo S et al (2022). GC-MS Profiling, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Essential Oil of Juniperus thurifera Bark. Evidence-Based Complementary and Alternative Medicine https://doi.org/10.1155/2022/6305672

Li Y, Xu J Z, Gu C X, Liu, G. l and Tian K (2018). Carvacrol Suppresses Inflammatory Responses in Rheumatoid Arthritis Fibroblast-like Synoviocytes. J. CelBiochem 120 (5):8169–8176 http://doi.org/10.1002/jcb.28098

Lisin G, Safiyev S & Craker L (1997). Antimicrobial activity of some essential oils, II WOCMAP Congress Medicinal and Aromatic Plants, Part 2: Pharmacognosy. Pharmacology, Phytomedicine, Toxicology 501:283–288.

Manuela S, Marco F, Mijat B, Stefania G, Laurent A, Maria Elena M, Anna Teresa P, Joanna De C, Rino A (2020). Experimental Data Baed Machine Learning Classification Models with Predictive ability to Select in Vitro Active Antiviral and Non-Toxic Essentials oils. Molecules 25:10 https://doi.org/10.3390/molecules25102452

Marsik P, Kokoska L, Landa P, Nepovim A, Soudek P and Vanek T (2005). In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med 71:739–742. http://doi.org/10.1055/s-2005-871288

Marzouk T et al (2015). Lavender-thymol as a new topical aromatherapy preparation for episiotomy: A randomized clinical trial. Journal of Obstetrics and Gynaecology 35 (5):472-475 https://doi.org/10.3109/01443615.2014.971985

Mastelic J et al (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. Journal of agricultural and food chemistry 56 (11): p. 3989-3996. https://doi.org/10.1021/jf703502q

Meister A, Bernhardt G, Christoffel V & Buschauer A (1999). Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects. Planta Med 65:512-516 https://doi.org/10.1055/s-1999-13975

Mendes S S, Bomfim R R, Jesus H C, Alves P B, Blank A F, Estevam C S et al (2010). Evaluation of the analgesic and anti-inflammatory effects of the essential oil of Lippiagracilisleaves. J. Ethnopharmacol 129:391–397 http://doi.org/10.1016/j.jep.2010.04.005

Nagoor Meeran M F and Prince P S (2012). Protective effects of thymol on altered plasma lipid peroxidation and nonenzymic antioxidants in isoproterenol- induced myocardial infarcted rats. J. Biochem. Mol. Toxicology 26:368–373. https://doi.org/10.1002/jbt.21431

Nagoor Meeran M F, Jagadeesh G S and Selvaraj P (2015). Thymol attenuates altered lipid metabolism in b adrenergic agonist induced myocardial infarcted rats by inhibiting tachycardia, altered electrocardiogram, apoptosis and cardiac hypertrophy. J. Funct. Foods 14:51–62. http://doi.org/10.1016/j.jff.2015.01.013

OECD. Test No. 423: Acute Oral Toxicity—Acute Toxic Class Method; OECD Guidelines for the Testing of Chemicals (2002) Section 4; OECD: Paris, France, ISBN 978-92-64-07100-1 https://doi.org/10.1787/9789264071001-en

Raza A et al (2023). Design, Synthesis, and Biological Evaluation of Dexibuprofen Derivatives as Novel Anti‐Inflammatory, Antioxidant and Molecular Docking Studies. Chemistry & Biodiversity, 20(7):e202300482. https://doi.org/10.1002/cbdv.202300482

Reitman S, Frankel S. A (1957). Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol. 28, 56–63 https://doi.org/10.1093/ajcp/28.1.56

Salehi B, Mishra A P, Shukla I, Sharifi-Rad M, Contreras M M, Segura-Carretero A, Fathi H, Nasrabadi N N, Kobarfard F and Sharifi-Rad J (2018). Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytotherapy Research 32:1688-1706. https://doi.org/10.1002/ptr.6109

Suresh V, Deepika G, Bantal V, Beedu S R, Rupula K (2018). Evaluation of Anti-Inflammatory and Anti-Nociceptive Potentials of Andrographolide and Forskolin: In Vivo Studies. J. Biol. Act. Prod. Nat 8:326–334 https://doi.org/10.1080/22311866.2018.1532144

Tang X, Chen S, & Wang L (2011). Purification and identification of carvacrol from the root of Stellerachamaejasme and research on its insecticidal activity. Natural Product Research. 25(3): 320–325 https://doi.org/10.1080/14786410802395162

Tilaoui M, Ait Mouse H, Jaafari A, Abou fatima R, Chait A, Zyad A (2011). Chemical composition and antiproliferative activity of essential oil from aerial parts of a medicinal herb Artemisia herba-alba. Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy 21(4): 781-785 https://doi.org/10.1590/S0102-695X2011005000101

Wang Q, Gong J, Huang X, Yu H, & Xue, F (2009). In vitro evaluation of the activity of microencapsulated carvacrol against Escherichia coli with K88 pili. Journal of Applied Microbiology 107(6): 1781–1788 https://doi.org/10.1111/j.1365-2672.2009.04363

Winter C A, Risley E A, Nuss G W (1962). Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Anti inflammatory Drugs. Exp. Biol. Med 111:544–547 https://doi.org/10.3181/00379727-111-27849

Xin H-L, Zhai X-F, Zheng X, Zhang L, Wang Y-L, Wang Z (2012). Anti-Inflammatory and Analgesic Activity of Total Flavone of Cunninghamia Lanceolata. Molecules 17: 8842–8850 https://doi.org/10.3390/molecules17088842

Yadav G D & Kamble S B (2009). Synthesis of carvacrol by Friedel– Crafts alkylation of o‐cresol with isopropanol using superacidic catalyst UDCaT‐5. Journal of Chemical Technology and Biotechnology 84 (10):1499–1508 https://doi.org/10.1002/jctb

Yu Y M, Chao T Y, Chang W C, Chang M J and Lee M F (2016). Thymol Reduces Oxidative Stress, Aortic Intimal Thickening and Inflammation-Related Gene Expression in Hyperlipidemic Rabbits. Journal of Food and Drug Analysis 24:556-563. https://doi.org/10.1016/j.jfda.2016.02.004

Anti-inflammatory activity of Chrysanthenone, Thymol and mixture of the two molecules

Downloads

Published

2025-10-07

Data Availability Statement

The datasets presented in this study are available upon reasonable request from the corresponding author.

Issue

Section

Original Research

How to Cite

El Ouahdani , K., Sligoua , M. ., Chebaibi , M. ., & Bousta , D. (2025). In vivo anti-inflammatory, analgesic, and hepatoprotective potencies and acute toxicity of chrysanthenone and thymol. Journal of Biology and Biomedical Research (ISSN: 3009-5522), 2(1), 182-193. https://doi.org/10.69998/d0s2s839

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.