Antimicrobial and insecticidal activity of Myrtus communis essential oils: Biological potential and ecological applications

Authors

  • Mounir HADDOU Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco Author
  • Mohamed TAIBI Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco Author
  • Amine Elbouzidi Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco Author
  • El Hanafi Laila Laboratory of Functional Ecology and Environmental Engineering, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco Author
  • Abdellah Baraich Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco. Author
  • Ennouamane Saalaoui Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, Morocco Author
  • Reda Bellaouchi Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco. Author
  • Abdeslam Asehraou Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco. Author
  • Mohamed ADDI Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco Author
  • Bouchra El Guerrouj Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, Morocco Author
  • Khalid Chaabane Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco Author

DOI:

https://doi.org/10.69998/qmr0da88

Keywords:

Bioinsecticide, Antibacterial, Antifungal, Adulticidal, Ovicidal, Larvicidal, Inhalation, Contact

Abstract

This study aims to investigate the bioactive molecules in Myrtus communis essential oil (MCEO) using the GC-MS method, and to assess their antibacterial, antifungal, and insecticidal activities. The insecticidal evaluation focuses on toxicity via inhalation and contact, examining adulticidal (adult mortality), ovicidal (impact on egg laying), and larvicidal (reduction in offspring emergence) effects. Biochemical analysis identified 24 compounds, accounting for 99.3% of the total oil content, with major components being 1,8-cineole (32.5%), α-pinene (18.6%), myrtenyl acetate (18%), limonene (10.9%), and α-terpenyl acetate (7.3%). Antibacterial and antifungal activities were evaluated against pathogenic strains using MIC and MBC assays. Results indicate significant inhibition of fungal growth, with a notably low MIC of 1.03% recorded against the Aspergillus niger HO32. Conversely, MIC values for bacterial strains remained relatively high, suggesting some resistance to MCEO. Regarding insecticidal activity, the inhalation test showed higher efficacy (LC50 = 1.38 ± 0.15 μL/L air) compared to the contact test (LC50 = 2.48 ± 0.39 μL/100 g) after 24 hours of exposure. Furthermore, the contact test showed a significant reduction in fertility and insect emergence at a dose of 20 μL/mL.

Downloads

Download data is not yet available.

References

Ali Chohan, T., Ali Chohan, T., Zahid Mumtaz, M., Waqar Alam, M., ud Din, S., Naseer, I., Riaz, A., Naseem, T., Iftikhar, A., E. Najaf Ali, D., Hassan, M., & M. Ali, H. (2023). Insecticidal Potential of α-Pinene and β-Caryophyllene against Myzus persicae and Their Impacts on Gene Expression. Phyton, 92(7), 1943–1954. https://doi.org/10.32604/phyton.2023.026945

Allali, A., Rezouki, S., Louasté, B., Bouchelta, Y., El Kamli, T., Eloutassi, N., & Fadli, M. (2020). Study of the nutritional quality and germination capacity of Cicer arietinum infested by Callosobruchus maculatus (Fab.). Plant Cell Biotechnology and Molecular Biology, 21(15–16).

Allali, A., Rezouki, S., Touati, N., Eloutassi, N., & Fadli, M. (2020). Agricultural traditional practices and risks of using insecticides during seed storage in Morocco. Plant Cell Biotechnology and Molecular Biology, 21(40).

Almohammed, H. I., Alkhaibari, A. M., & Alanazi, A. D. (2022). Antiparasitic effects of Elettaria cardamomum L. essential oil and its main compounds, 1-8 Cineole alone and in combination with albendazole against Echinococcus granulosus protoscoleces. Saudi Journal of Biological Sciences, 29(4), 2811–2818. https://doi.org/10.1016/j.sjbs.2022.01.005

Amrati, F. E.-Z., Chebaibi, M., Galvão de Azevedo, R., Conte, R., Slighoua, M., Mssillou, I., Kiokias, S., de Freitas Gomes, A., Soares Pontes, G., & Bousta, D. (2023). Phenolic Composition, Wound Healing, Antinociceptive, and Anticancer Effects of Caralluma europaea Extracts. Molecules, 28(4), 1780. https://doi.org/10.3390/molecules28041780

Aprotosoaie, A. C., Luca, V. S., Trifan, A., & Miron, A. (2019). Antigenotoxic Potential of Some Dietary Non-phenolic Phytochemicals (pp. 223–297). https://doi.org/10.1016/B978-0-444-64181-6.00007-3

Asllani, U. (2000). Chemical Composition of Albanian Myrtle Oil (Myrtus communis L.). Journal of Essential Oil Research, 12(2), 140–142. https://doi.org/10.1080/10412905.2000.9699481

Benddine, H., Zaid, R., Babaali, D., & Daoudi-Hacini, S. (2023a). Biological activity of essential oils of Myrtus communis (Myrtaceae, Family) and Foeniculum vulgare (Apiaceae, Family) on open fields conditions against corn aphids Rhopalosiphum maidis (Fitch, 1856) in western Algeria. Journal of the Saudi Society of Agricultural Sciences, 22(2), 78–88. https://doi.org/10.1016/j.jssas.2022.07.001

Benddine, H., Zaid, R., Babaali, D., & Daoudi-Hacini, S. (2023b). Biological activity of essential oils of Myrtus communis (Myrtaceae, Family) and Foeniculum vulgare (Apiaceae, Family) on open fields conditions against corn aphids Rhopalosiphum maidis (Fitch, 1856) in western Algeria. Journal of the Saudi Society of Agricultural Sciences, 22(2), 78–88. https://doi.org/10.1016/j.jssas.2022.07.001

Ben Hsouna, A., Hamdi, N., Miladi, R., & Abdelkafi, S. (2014). Myrtus communis Essential Oil: Chemical Composition and Antimicrobial Activities against Food Spoilage Pathogens. Chemistry & Biodiversity, 11(4), 571–580. https://doi.org/10.1002/cbdv.201300153

Beniaich, G., Hafsa, O., Maliki, I., Bin Jardan, Y. A., El Moussaoui, A., Chebaibi, M., Agour, A., Zouirech, O., Nafidi, H.-A., Khallouki, F., Bourhia, M., & Taleb, M. (2022). GC-MS Characterization, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Anvillea radiata Essential Oils. Horticulturae, 8(10), 886. https://doi.org/10.3390/horticulturae8100886

Bouslamti, M., Loukili, E. H., Elrherabi, A., El Moussaoui, A., Chebaibi, M., Bencheikh, N., Nafidi, H.-A., Bin Jardan, Y. A., Bourhia, M., Bnouham, M., Lyoussi, B., & Benjelloun, A. S. (2023). Phenolic Profile, Inhibition of α-Amylase and α-Glucosidase Enzymes, and Antioxidant Properties of Solanum elaeagnifolium Cav. (Solanaceae): In Vitro and In Silico Investigations. Processes, 11(5), 1384. https://doi.org/10.3390/pr11051384

Bouzabata, A., Cabral, C., Gonçalves, M. J., Cruz, M. T., Bighelli, A., Cavaleiro, C., Casanova, J., Tomi, F., & Salgueiro, L. (2015a). Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology, 75, 166–172. https://doi.org/10.1016/j.fct.2014.11.009

Bouzabata, A., Cabral, C., Gonçalves, M. J., Cruz, M. T., Bighelli, A., Cavaleiro, C., Casanova, J., Tomi, F., & Salgueiro, L. (2015b). Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology, 75, 166–172. https://doi.org/10.1016/j.fct.2014.11.009

Brada, M., Tabti, N., Boutoumi, H., Wathelet, J. P., & Lognay, G. (2012). Composition of the essential oil of leaves and berries of Algerian myrtle ( Myrtus communis L.). Journal of Essential Oil Research, 24(1), 1–3. https://doi.org/10.1080/10412905.2012.645299

Caputo, L., Capozzolo, F., Amato, G., De Feo, V., Fratianni, F., Vivenzio, G., & Nazzaro, F. (2022). Chemical composition, antibiofilm, cytotoxic, and anti-acetylcholinesterase activities of Myrtus communis L. leaves essential oil. BMC Complementary Medicine and Therapies, 22(1), 142. https://doi.org/10.1186/s12906-022-03583-4

Chebaibi, M., Bourhia, M., Amrati, F. ez-zahra, Slighoua, M., Mssillou, I., Aboul-Soud, M. A. M., Khalid, A., Hassani, R., Bousta, D., Achour, S., Benhida, R., & Daoud, R. (2024). Salsoline derivatives, genistein, semisynthetic derivative of kojic acid, and naringenin as inhibitors of A42R profilin-like protein of monkeypox virus: in silico studies. Frontiers in Chemistry, 12. https://doi.org/10.3389/fchem.2024.1445606

Haddou, M., Elbouzidi, A., Taibi, M., Baraich, A., Meryem, I. Y., Bourhia, M., Dauelbait, M., Bellaouchi, R., Saalaoui, E., and Capanoglu, E. (2024). Chemical profiling and antibacterial efficacy of Lavandula Pinnata L. essential oil with conventional antibiotics: synergetic interactions. Applied Ecology & Environmental Research, 22(6).

Hennia, A., Nemmiche, S., Dandlen, S., & Miguel, M. G. (2019). Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. Journal of Essential Oil Research, 31(6), 487–545. https://doi.org/10.1080/10412905.2019.1611672

Honório, V. G., Bezerra, J., Souza, G. T., Carvalho, R. J., Gomes-Neto, N. J., Figueiredo, R. C. B. Q., Melo, J. V., Souza, E. L., & Magnani, M. (2015). Inhibition of Staphylococcus aureus cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1,8-cineole. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01223

Houzi, G., El abdali, Y., Beniaich, G., Chebaibi, M., Taibi, M., Elbouzidi, A., Kaioua, S., Asehraou, A., Addi, M., Chaabane, K., Flouchi, R., Allali, A., & Khal-Layoun, S. (2024). Antifungal, Insecticidal, and Repellent Activities of Rosmarinus officinalis Essential Oil and Molecular Docking of Its Constituents against Acetylcholinesterase and β ‐Tubulin. Scientifica, 2024(1). https://doi.org/10.1155/2024/5558041

Koutsaviti, A., Antonopoulou, V., Vlassi, A., Antonatos, S., Michaelakis, A., Papachristos, D. P., & Tzakou, O. (2018). Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae). Journal of Pest Science, 91(2), 873–886. https://doi.org/10.1007/s10340-017-0934-0

Koutsaviti, A., Lignou, I., Bazos, I., Koliopoulos, G., Michaelakis, A., Giatropoulos, A., & Tzakou, O. (2015). Chemical Composition and Larvicidal Activity of Greek Myrtle Essential Oils against Culex pipiens biotype molestus. Natural Product Communications, 10(10), 1759–1762.

Křůmal, K., Kubátková, N., Večeřa, Z., & Mikuška, P. (2015). Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils. Chemical Papers, 69(8). https://doi.org/10.1515/chempap-2015-0118

Merghni, A., Noumi, E., Hadded, O., Dridi, N., Panwar, H., Ceylan, O., Mastouri, M., & Snoussi, M. (2018). Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microbial Pathogenesis, 118, 74–80. https://doi.org/10.1016/j.micpath.2018.03.006

Morcia, C., Malnati, M., & Terzi, V. (2011). In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Additives & Contaminants: Part A, 1–8. https://doi.org/10.1080/19440049.2011.643458

Moura, D., Vilela, J., Saraiva, S., Monteiro-Silva, F., De Almeida, J. M. M. M., & Saraiva, C. (2023). Antimicrobial Effects and Antioxidant Activity of Myrtus communis L. Essential Oil in Beef Stored under Different Packaging Conditions. Foods, 12(18), 3390. https://doi.org/10.3390/foods12183390

Noui Mehidi, I., Ait Ouazzou, A., Tachoua, W., & Hosni, K. (2024). Investigating the Antimicrobial Properties of Essential Oil Constituents and Their Mode of Action. Molecules, 29(17), 4119. https://doi.org/10.3390/molecules29174119

Owlia, P., Saderi, H., Rasooli, I., & Sefidkon, F. (2009). Antimicrobial characteristics of some herbal Oils on Pseudomonas aeruginosa with special reference to their chemical compositions.

Papadopoulos, C. J., Carson, C. F., Chang, B. J., & Riley, T. V. (2008). Role of the MexAB-OprM Efflux Pump of Pseudomonas aeruginosa in Tolerance to Tea Tree ( Melaleuca alternifolia ) Oil and Its Monoterpene Components Terpinen-4-ol, 1,8-Cineole, and α-Terpineol. Applied and Environmental Microbiology, 74(6), 1932–1935. https://doi.org/10.1128/AEM.02334-07

Raveau, R., Fontaine, J., & Lounès-Hadj Sahraoui, A. (2020). Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods, 9(3), 365. https://doi.org/10.3390/foods9030365

Rodrigues, K. A. da F., Amorim, L. V., Dias, C. N., Moraes, D. F. C., Carneiro, S. M. P., & Carvalho, F. A. de A. (2015). Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. Journal of Ethnopharmacology, 160, 32–40. https://doi.org/10.1016/j.jep.2014.11.024

Salam, Md. A., Al-Amin, Md. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. A. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946

Sharma, D., Bose, D., Yadav, R., Mehta, J., & Jaiswal, A. (2024). Exploring Eucalyptus globulus phytochemicals: Analytical, antibacterial, and molecular docking investigations. The Microbe, 3, 100084. https://doi.org/10.1016/j.microb.2024.100084

Singh, K., Deepa, N., Chauhan, S., Tandon, S., Verma, R. S., & Singh, A. (2024). Antifungal action of 1,8 cineole, a major component of Eucalyptus globulus essential oil against Alternaria tenuissima via overproduction of reactive oxygen species and downregulation of virulence and ergosterol biosynthetic genes. Industrial Crops and Products, 214, 118580. https://doi.org/10.1016/j.indcrop.2024.118580

Souto, A. L., Sylvestre, M., Tölke, E. D., Tavares, J. F., Barbosa-Filho, J. M., & Cebrián-Torrejón, G. (2021). Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16), 4835.

Taibi, M., Elbouzidi, A., Haddou, M., Loukili, E. H., Bellaouchi, R., Asehraou, A., Douzi, Y., Addi, M., Salamatullah, A. M., Nafidi, H.-A., Bourhia, M., Dauelbait, M., Guerrouj, B. El, & Chaabane, K. (2024). Chemical Profiling, Antibacterial Efficacy, and Synergistic Actions of Ptychotis verticillata Duby Essential Oil in Combination with Conventional Antibiotics. Natural Product Communications, 19(1). https://doi.org/10.1177/1934578X231222785

Taibi, M., Elbouzidi, A., Ou-Yahia, D., Dalli, M., Bellaouchi, R., Tikent, A., Roubi, M., Gseyra, N., Asehraou, A., Hano, C., Addi, M., El Guerrouj, B., & Chaabane, K. (2023). Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics, 12(4), 655. https://doi.org/10.3390/antibiotics12040655

Tavassoli, M., Shayeghi, M., Abai, M., Vatandoost, H., Khoobdel, M., Salari, M., Ghaderi, A., & Rafi, F. (2011). Repellency Effects of Essential Oils of Myrtle (Myrtus communis), Marigold (Calendula officinalis) Compared with DEET against Anopheles stephensi on Human Volunteers. Iranian Journal of Arthropod-Borne Diseases, 5(2), 10–22.

Tourabi, M., Nouioura, G., Touijer, H., Baghouz, A., El Ghouizi, A., Chebaibi, M., Bakour, M., Ousaaid, D., Almaary, K. S., Nafidi, H.-A., Bourhia, M., Farid, K., Lyoussi, B., & Derwich, E. (2023). Antioxidant, Antimicrobial, and Insecticidal Properties of Chemically Characterized Essential Oils Extracted from Mentha longifolia: In Vitro and In Silico Analysis. Plants, 12(21), 3783. https://doi.org/10.3390/plants12213783

Yadegarinia, D., Gachkar, L., Rezaei, M. B., Taghizadeh, M., Astaneh, S. A., & Rasooli, I. (2006). Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry, 67(12), 1249–1255. https://doi.org/10.1016/j.phytochem.2006.04.025

Downloads

Published

2025-08-06

Data Availability Statement

Data will be available upon request from the corresponding author.

Issue

Section

Original Research

How to Cite

HADDOU, M., TAIBI, M., Elbouzidi, A. ., El Hanafi, L., Baraich, A., Saalaoui, E., Bellaouchi, R., Asehraou, A., ADDI, M., El Guerrouj, B., & Chaabane, K. (2025). Antimicrobial and insecticidal activity of Myrtus communis essential oils: Biological potential and ecological applications. Journal of Biology and Biomedical Research (ISSN: 3009-5522), 1(2), 128-140. https://doi.org/10.69998/qmr0da88

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)