Comprehensive in vitro and in silico study of the antioxidant and antimicrobial attributes of chemically characterized essential oil derived from Moroccan Thymus vulgaris
DOI:
https://doi.org/10.69998/tgef3a11Keywords:
Thymus vulgaris, essential oil, antimicrobial, antioxidant, in vitro, in silicoAbstract
Recent studies have highlighted the bioactive and protective properties of phytochemicals found in essential oils (EOs), particularly in those derived from medicinal herbs. This study aimed to identify the phytochemical composition of Thymus vulgaris EO from Morocco and to evaluate its antioxidant and antimicrobial activities through both in vitro and in silico approaches. The EO composition was analyzed using GC-MS, revealing estragole (59.76%) as the primary component, followed by borneol (10.08%) and α-terpineol (6.81%). Antioxidant activity was assessed using FRAP and DPPH assays, resulting EC50 and IC50 values of 6.780 mg/mL and 0.058 mg/mL, respectively. Additionally, the EO demonstrated a substantial total antioxidant capacity of 240.30 mg AAE/g EO. The antimicrobial activity was evaluated against various bacterial and fungal strains using standard procedures. A considerable efficacy of T. vulgaris EO against all tested fungi was noted by inhibiting totally the growth of A. flavus, A. niger and F. proliferatum at 0.886 g/mL. Also, the tested EO inhibited the growth of C. albicans as well as Gram positive and negative bacteria with inhibition zones diameters ranging from 7.33 ± 0.58 to 56 ± 1.73 mm. The in silico antibacterial analysis revealed terpinen-4-ol as the most active molecule in the EO against E. coli Gyrase B (PDB ID: 3G7E), achieving a glide score of -5.987 kcal/mol. Regarding the antifungal activity, Δ-cadinene and thymol were identified as active phytocompounds targeting the sterol 14-α demethylase (CYP51) from C. albicans (PDB ID: 5FSA) and the β-1,4-endoglucanase from A. niger (PDB ID: 5I77), respectively, with glide scores of -7.376 and -5.551 kcal/mol. These findings highlight the promising potential of T. vulgaris EO for medical and industrial applications as a remedy against free radicals and resistant pathogenic microbes.
Downloads
References
Adams, R.P., 2007. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry., 4th ed, Illinois USA: Allured Publishing Corporation, Carol Stream. Allured Pub. Corp, Carol Stream, Ill, USA.
Al-Assaf, I.N., Mohammed, M.J., Mohamad, I.J., Ali, F.F., 2023. Essential oils and fatty acids of Thymus vulgaris seeds: chemical composition, antioxidant and antimicrobial activity. Egypt. J. Chem. 66, 459–464. https://doi.org/10.21608/EJCHEM.2022.144197.6288
Al-Shahrani, M.H., Mahfoud, M., Anvarbatcha, R., Athar, M.T., Al Asmari, A., 2017. Evaluation of antifungal activity and cytotoxicity of Thymus vulgaris essential oil. Pharmacogn. Commun. 7, 34–40. https://doi.org/10.5530/PC.2017.1.5
Aljabeili, H.S., Barakat, H., Abdel-Rahman, H.A., Aljabeili, H.S., Barakat, H., Abdel-Rahman, H.A., 2018. Chemical Composition, Antibacterial and Antioxidant Activities of Thyme Essential Oil (Thymus vulgaris). Food Nutr. Sci. 9, 433–446. https://doi.org/10.4236/FNS.2018.95034
Amorati, R., Foti, M.C., Valgimigli, L., 2013. Antioxidant activity of essential oils. J. Agric. Food Chem. 61, 10835–10847. https://doi.org/10.1021/JF403496K
Amrati, F.E.Z., Chebaibi, M., Galvão de Azevedo, R., Conte, R., Slighoua, M., Mssillou, I., Kiokias, S., de Freitas Gomes, A., Soares Pontes, G., Bousta, D., 2023. Phenolic Composition, Wound Healing, Antinociceptive, and Anticancer Effects of Caralluma europaea Extracts. Molecules. 28, 1780. https://doi.org/10.3390/MOLECULES28041780
Anasa, R.A., Nurlaila, W., Dharmastuti, W., Santoso, I., Maryanto, A.E., Sitaresmi, S., Yasman, Y., 2019. Isolation and screening of amylase activity of primary moulds in Ragi Tapai of Indonesia. AIP Conf. Proc. 2168, 20080. https://doi.org/10.1063/1.5132507
Aouadhi, C., Ghazghazi, H., Hasnaoui, B., Maaroufi, A., 2013. Comparaison de l’activité antifongique d’extraits méthanoliques de trois plantes collectées du nord-ouest de la Tunisie . Microbiol. Hygiène Aliment. 25, 9–14.
Azad, M.A.K., 2024. Antimicrobial resistance : Real threat for the clinician. Bangladesh J. Med. 35, 131. https://doi.org/10.3329/BJM.V35I20.73370
Ballester-Costa, C., Sendra, E., Fernández-López, J., Pérez-álvarez, J.A., Viuda-Martos, M., 2017. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth. Foods. 6, 59. https://doi.org/10.3390/FOODS6080059
Bellakhdar, J., 1997. La Pharmacopée marocaine traditionnelle. Médecine arabe ancienne et savoirs populaires. Ibis Press, Saint Etienne.
Ben El Jilali, S., Ihamdane, R., Moubchir, T., Beniaich, G., Mssillou, I., El Abdali, Y., Allali, A., Khadmaoui, A., 2023. Lavandula dentata Essential Oils: A Bio-Insecticide for an Agroecological Approach to Protecting Chickpea Seeds against Callosobruchus maculatus. Trop. J. Nat. Prod. Res. 7, 5123–5127. https://doi.org/10.26538/TJNPR/V7I11.15
Beniaich, G., Hafsa, O., Maliki, I., Bin Jardan, Y.A., El Moussaoui, A., Chebaibi, M., Agour, A., Zouirech, O., Nafidi, H.A., Khallouki, F., Bourhia, M., Taleb, M., 2022. GC-MS Characterization, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Anvillea radiata Essential Oils. Horticulturae. 8, 886. https://doi.org/10.3390/HORTICULTURAE8100886
Berrougui, H., Isabelle, M., Cherki, M., Khalil, A., 2006. Marrubium vulgare extract inhibits human-LDL oxidation and enhances HDL-mediated cholesterol efflux in THP-1 macrophage. Life Sci. 80, 105–112. https://doi.org/10.1016/J.LFS.2006.08.040
Borugă, O., Jianu, C., Mişcă, C., Goleţ, I., Gruia, A.T., Horhat, F.G., 2014. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J. Med. Life. 7, 56–60.
Brino, L., Urzhumtsev, A., Mousli, M., Bronner, C., Mitschler, A., Oudet, P., Moras, D., 2000. Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275, 9468–9475. https://doi.org/10.1074/jbc.275.13.9468
Ćavar, S., Vidic, D., Maksimović, M., 2013. Volatile constituents, phenolic compounds, and antioxidant activity of Calamintha glandulosa (Req.) Bentham. J. Sci. Food Agric. 93, 1758–1764. https://doi.org/10.1002/JSFA.5967
Chebaibi, M., Bourhia, M., Amrati, F. ez-zahra, Slighoua, M., Mssillou, I., Aboul-Soud, M.A.M., Khalid, A., Hassani, R., Bousta, D., Achour, S., Benhida, R., Daoud, R., 2024. Salsoline derivatives, genistein, semisynthetic derivative of kojic acid, and naringenin as inhibitors of A42R profilin-like protein of monkeypox virus: in silico studies. Front. Chem. 12, 1445606. https://doi.org/10.3389/FCHEM.2024.1445606/BIBTEX
Chouhan, S., Sharma, K., Guleria, S., 2017. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines. 4, 58. https://doi.org/10.3390/medicines4030058
Circu, M.L., Aw, T.Y., 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762. https://doi.org/10.1016/J.FREERADBIOMED.2009.12.022
Cushnie, T.P.T., Lamb, A.J., 2011. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents. 38, 99–107. https://doi.org/10.1016/J.IJANTIMICAG.2011.02.014
Damjanović-Vratnica, B., Caković, D., Perović, S., 2015. Composition and antimicrobial studies of essential oil of Thymus vulgaris from Montenegro. Biol. Nyssana. 6, 67–73.
de Vries, R.P., Visser, J., 2001. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497. https://doi.org/10.1128/MMBR.65.4.497-522.2001
Diniz, A.F., Santos, B., Nóbrega, L.M.M.O., Santos, V.R.L., Mariz, W.S., Cruz, P.S.C., Nóbrega, R.O., Silva, R.L., Paula, A.F.R., Santos, J.R.D.A., Pessôa, H.L.F., Oliveira-Filho, A.A., 2023. Antibacterial activity of Thymus vulgaris (thyme) essential oil against strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus saprophyticus isolated from meat product. Brazilian J. Biol. 83, e275306. https://doi.org/10.1590/1519-6984.275306
Djeridane, A., Yousfi, M., Brunel, J.M., Stocker, P., 2010. RETRACTED: Isolation and characterization of a new steroid derivative as a powerful antioxidant from Cleome arabica in screening the in vitro antioxidant capacity of 18 Algerian medicinal plants. Food Chem. Toxicol. 48, 2599–2606. https://doi.org/10.1016/J.FCT.2010.06.028
Drioiche, A., Zahra Radi, F., Ailli, A., Bouzoubaa, A., Boutakiout, A., Mekdad, S., AL Kamaly, O., Saleh, A., Maouloua, M., Bousta, D., Sahpaz, S., EL Makhoukhi, F., Zair, T., 2022. Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic Thymes in Morocco against multi-resistant bacteria and pathogenic fungi. Saudi Pharm. J. 30, 1200–1214. https://doi.org/10.1016/J.JSPS.2022.06.022
EDQM., 2004. European pharmacopoeia., 5th ed. ed. Council of Europe., Strasbourg, France.
El Abdali, Y., Allali, A., Agour, A., Mikou, K., Lahkimi, A., Eloutassi, N., Bouia, A., 2021. Phytochemical Screening, and in Vitro Antiradical and Immunostimulant Potential of Linum Usitatissimum L. Pharmacologyonline. 3, 602–614.
El Abdali, Y., Beniaich, G., Mahraz, A.M., El Moussaoui, A., Bin Jardan, Y.A., Akhazzane, M., Chebaibi, M., Nafidi, H.-A., Eloutassi, N., Bourhia, M., Bouia, A., 2023a. Antibacterial, Antioxidant, and in silico NADPH Oxidase Inhibition Studies of Essential Oils of Lavandula dentata against Foodborne Pathogens. Evidence-Based Complement. Altern. Med. 2023, 1–12. https://doi.org/10.1155/2023/9766002
El Abdali, Y., Mahraz, A.M., Beniaich, G., Mssillou, I., Chebaibi, M., Jardan, Y.A. Bin, Lahkimi, A., Nafidi, H.-A., Aboul-Soud, M.A.M., Bourhia, M., Bouia, A., 2023b. Essential oils of Origanum compactum Benth: Chemical characterization, in vitro, in silico, antioxidant, and antibacterial activities. Open Chem. 21, 20220282. https://doi.org/10.1515/CHEM-2022-0282
EL Abdali, Y., Saghrouchni, H., Kara, M., Mssillou, I., Allali, A., Jardan, Y.A. Bin, Kafkas, N.E., El-Assri, E.-M., Nafidi, H.-A., Bourhia, M., Almaary, K.S., Eloutassi, N., Bouia, A., 2023. Exploring the Bioactive Compounds in Some Apple Vinegar Samples and Their Biological Activities. Plants. 12, 3850. https://doi.org/10.3390/PLANTS12223850
Fontenelle, R.O.S., Morais, S.M., Brito, E.H.S., Brilhante, R.S.N., Cordeiro, R.A., Lima, Y.C., Brasil, N.V.G.P.S., Monteiro, A.J., Sidrim, J.J.C., Rocha, M.F.G., 2011. Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives. Molecules. 16, 6422–6431. https://doi.org/10.3390/MOLECULES16086422
Foss, S.R., Nakamura, C. V., Ueda-Nakamura, T., Cortez, D.A.G., Endo, E.H., Dias Filho, B.P., 2014. Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Ann. Clin. Microbiol. Antimicrob. 13. https://doi.org/10.1186/S12941-014-0032-6
Gonzalez-Burgos, E., Gomez-Serranillos, M.P., 2012. Terpene Compounds in Nature: A Review of Their Potential Antioxidant Activity. Curr. Med. Chem. 19, 5319–5341. https://doi.org/10.2174/092986712803833335
Halat, D.H., Krayem, M., Khaled, S., Younes, S., 2022. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 14. https://doi.org/10.3390/NU14102104
Hargrove, T.Y., Friggeri, L., Wawrzak, Z., Qi, A., Hoekstra, W.J., Schotzinger, R.J., York, J.D., Peter Guengerich, F., Lepesheva, G.I., 2017. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem. 292, 6728–6743. https://doi.org/10.1074/JBC.M117.778308
Hassan, H.M., Mina, S.A., Bishr, M.M., Khalik, S.M.A., 2019. Influence of foliar spray of ethephon and water stress on the essential oil composition and impact on the cytotoxic activity of Thymus vulgaris aerial parts. Nat. Prod. Res. 33, 2714–2717. https://doi.org/10.1080/14786419.2018.1460843
He, T., Li, Xiao, Wang, X., Xu, X., Yan, X., Li, Xiang, Sun, S., Dong, Y., Ren, X., Liu, X., Wang, Y., Sui, H., Xia, Q., She, G., 2020. Chemical composition and anti-oxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Sci. Reports 2020 101 10, 1–18. https://doi.org/10.1038/s41598-020-68188-8
Horvathova, E., Navarova, J., Galova, E., Sevcovicova, A., Chodakova, L., Snahnicanova, Z., Melusova, M., Kozics, K., Slamenova, D., 2014. Assessment of antioxidative, chelating, and DNA-Protective effects of selected essential oil components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of plants and intact Rosmarinus officinalis oil. J. Agric. Food Chem. 62, 6632–6639. https://doi.org/10.1021/JF501006Y
Houzi, G., El Abdali, Y., Beniaich, G., Chebaibi, M., Taibi, M., Elbouzidi, A., Kaioua, S., Asehraou, A., Addi, M., Chaabane, K., Flouchi, R., Allali, A., Khal-Layoun, S., 2024. Antifungal, Insecticidal, and Repellent Activities of Rosmarinus officinalis Essential Oil and Molecular Docking of Its Constituents against Acetylcholinesterase and β-Tubulin. Scientifica. 2024, 5558041. https://doi.org/10.1155/2024/5558041
Javed, H., Erum, S., Tabassum, S., Ameen, F., 2013. An Overview on Medicinal Importance of Thymus Vulgaris. J. Asian Sci. Res. 3, 974–982.
Justus, B., de Almeida, V.P., Gonçalves, M.M., da Silva Fardin de Assunção, D.P., Borsato, D.M., Arana, A.F.M., Maia, B.H.L.N.S., de Paula, J. de F.P., Budel, J.M., Farago, P.V., 2018. Chemical composition and biological activities of the essential oil and anatomical markers of Lavandula dentata L. Cultivated in Brazil. Brazilian Arch. Biol. Technol. 61, e18180111. https://doi.org/10.1590/1678-4324-2018180111
Kowalczyk, A., Przychodna, M., Sopata, S., Bodalska, A., Fecka, I., 2020. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules. 25, 4125. https://doi.org/10.3390/MOLECULES25184125
Kumar, A., Alfhili, M.A., Bari, A., Ennaji, H., Ahamed, M., Bourhia, M., Chebaibi, M., Benbacer, L., Ghneim, H.K., Abudawood, M., Alghamdi, K.M., Giesy, J.P., Al-Sheikh, Y.A., Aboul-Soud, M.A.M., 2022. Apoptosis-mediated anti-proliferative activity of Calligonum comosum against human breast cancer cells, and molecular docking of its major polyphenolics to Caspase-3. Front. Cell Dev. Biol. 10, 972111. https://doi.org/10.3389/FCELL.2022.972111/BIBTEX
Labiad, M.H., Belmaghraoui, W., Ghanimi, A., El-Guezzane, C., Chahboun, N., Harhar, H., Egea-Gilabert, C., Zarrouk, A., Tabyaoui, M., 2022. Biological properties and chemical profiling of essential oils of Thymus (vulgaris, algeriensis and broussonettii) grown in Morocco. Chem. Data Collect. 37, 100797. https://doi.org/10.1016/J.CDC.2021.100797
Leyva-López, N., Gutiérrez-Grijalva, E.P., Vazquez-Olivo, G., Heredia, J.B., 2017. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules. 22, 989. https://doi.org/10.3390/molecules22060989
Liang, L., Zhang, W., Hao, J., Wang, Y., Wei, S., Zhang, S., Hu, Y., Lv, Y., 2023. Estragole Inhibits Growth and Aflatoxin Biosynthesis of Aspergillus flavus by Affecting Reactive Oxygen Species Homeostasis. Microbiol. Spectr. 11. https://doi.org/10.1128/SPECTRUM.01348-23
Mahendra, M.Y., Purba, R.A., Dadi, T.B., Pertiwi, H., 2023. Estragole: A review of its pharmacology, effect on animal health and performance, toxicology, and market regulatory issues. Iraqi J. Vet. Sci. 37, 537–546. https://doi.org/10.33899/ijvs.2022.135092.2445
Mali, S.N., Tambe, S., Pratap, A.P., Cruz, J.N., 2022. Molecular Modeling Approaches to Investigate Essential Oils (Volatile Compounds) Interacting with Molecular Targets BT - Essential Oils: Applications and Trends in Food Science and Technology, in: Santana de Oliveira, M. (Ed.), . Springer International Publishing, Cham, pp. 417–442. https://doi.org/10.1007/978-3-030-99476-1_18
Maškovič, P.Z., Manojlovič, N.T., Mandič, A.I., Mišan, A.Ç., Milovanovic, I.L., Radojkovič, M.M., Cvijovič, M.S., Solujič, S.R., 2012. Phytochemical screening and biological activity of extracts of plant species Halacsya sendtneri (Boiss.) Dörfl. Hem. Ind. 66, 43–51. https://doi.org/10.2298/HEMIND110828068M
Mastelić, J., Jerković, I., Blažević, I., Poljak-Blaži, M., Borović, S., Ivančić-Baće, I., Smrěcki, V., Žarković, N., Brčić-Kostic, K., Vikić-Topić, D., Müller, N., 2008. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem. 56, 3989–3996. https://doi.org/10.1021/JF073272V
Mehani, M., Mehani, I., Segni, L., Morcia, C., Terzi, V., 2024. Evaluation of the Antifugal and Antibacterial Potential of Thymus vulgaris L. Essential Oil. Res. Adv. Microbiol. Biotechnol. 9, 129–137. https://doi.org/10.9734/BPI/RAMB/V9/2150G
Moattar, F.S., Sariri, R., Yaghmaee, P., Giahi, M., 2016. Enzymatic and non-enzymatic antioxidants of Calamintha officinalis moench extracts. J. Appl. Biotechnol. Reports. 3, 489–494.
Niu, C., Wang, C., Yang, Y., Chen, R., Zhang, J., Chen, H., Zhuge, Y., Li, J., Cheng, J., Xu, K., Chu, M., Ren, C., Zhang, C., Jia, C., 2020. Carvacrol Induces Candida albicans Apoptosis Associated With Ca2+/Calcineurin Pathway. Front. Cell. Infect. Microbiol. 10, 523983. https://doi.org/10.3389/FCIMB.2020.00192/BIBTEX
Pasqua, R. Di, Mamone, G., Ferranti, P., Ercolini, D., Mauriello, G., 2010. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10, 1040–1049. https://doi.org/10.1002/PMIC.200900568
Patil, S.M., Ramu, R., Shirahatti, P.S., Shivamallu, C., Amachawadi, R.G., 2021. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 7, e07054. https://doi.org/10.1016/J.HELIYON.2021.e07054
Prieto, P., Pineda, M., Aguilar, M., 1999. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 269, 337–341. https://doi.org/10.1006/ABIO.1999.4019
Rodriguez-Garcia, I., Silva-Espinoza, B.A., Ortega-Ramirez, L.A., Leyva, J.M., Siddiqui, M.W., Cruz-Valenzuela, M.R., Gonzalez-Aguilar, G.A., Ayala-Zavala, J.F., 2016. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit. Rev. Food Sci. Nutr. 56, 1717–1727. https://doi.org/10.1080/10408398.2013.800832
Sadoon Abd, H., Al. Haidar, A.H.M.J., 2024. Comparison of Antifungal Activity of Thymus Vulgaris Essential Oil and Triple Antibiotic Paste Against Candida albicans Isolated from Root Canal (In Vitro Study). F1000Research. 13, 381. https://doi.org/10.12688/f1000research.144396.1
Said-Al Ahl, H.A.H., Sabra, A.S., Alataway, A., Astatkie, T., Mahmoud, A.A., Bloem, E., 2019. Biomass production and essential oil composition of Thymus vulgaris in response to water stress and harvest time. J. Essent. Oil Res. 31, 63–68. https://doi.org/10.1080/10412905.2018.1518794
Sakkas, H., Papadopoulou, C., 2017. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 27, 429–438. https://doi.org/10.4014/JMB.1608.08024
Samara, Y.K., Beniaich, G., El Abdali, Y., Kaouia, S., Flouchi, R., Moubchir, T., Allali, A., Khadmaoui, A., 2023. Phytochemical Composition, Antibacterial and Antifungal Activities of Essential Oil of Juniperus phoenicea from Fez-Meknes Region, North Central Morocco. Trop. J. Nat. Prod. Res. 7, 5633–5638. https://doi.org/10.26538/TJNPR/V7I12.39
Satyal, P., Murray, B.L., McFeeters, R.L., Setzer, W.N., 2016. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods 5, 70. https://doi.org/10.3390/FOODS5040070
Senhaji, B., Chebli, B., Mayad, E.H., Ferji, Z., 2014. Antifungal activity of medicinal plants extracts against Botrytis cinerea the causal agent of gray mold on tomato. J. Biol. Agric. Healthc. 4, 141–147.
Singh, B.K., Maurya, A., 2024. Antioxidant Activity of Essential Oils: A Mechanistic Approach. In: Prakash, B., Dubey, N.K., Freitas Brilhante de São José, J. (eds) Plant Essent. Oils. Springer, Singapore. https://doi.org/10.1007/978-981-99-4370-8_3
Storia, A. La, Ercolini, D., Marinello, F., Pasqua, R. Di, Villani, F., Mauriello, G., 2011. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res. Microbiol. 162, 164–172. https://doi.org/10.1016/J.RESMIC.2010.11.006
Stringaro, A., Vavala, E., Colone, M., Pepi, F., Mignogna, G., Garzoli, S., Cecchetti, S., Ragno, R., Angiolella, L., 2014. Effects of Mentha suaveolens essential oil alone or in combination with other drugs in Candida albicans. Evidence-based Complement. Altern. Med. 2014. https://doi.org/10.1155/2014/125904
Sulaiman, R., Trizna, E., Kolesnikova, A., Khabibrakhmanova, A., Kurbangalieva, A., Bogachev, M., Kayumov, A., 2022. Antimicrobial and Biofilm-Preventing Activity of l-Borneol Possessing 2(5H)-Furanone Derivative F131 against S. aureus—C. albicans Mixed Cultures. Pathogens. 12, 26. https://doi.org/10.3390/PATHOGENS12010026
Tit, D.M., Bungau, S.G., 2023. Antioxidant Activity of Essential Oils. Antioxidants. 12, 383. https://doi.org/10.3390/ANTIOX12020383
Tourabi, M., Nouioura, G., Touijer, H., Baghouz, A., El Ghouizi, A., Chebaibi, M., Bakour, M., Ousaaid, D., Almaary, K.S., Nafidi, H.-A., Bourhia, M., Farid, K., Lyoussi, B., Derwich, E., 2023. Antioxidant, Antimicrobial, and Insecticidal Properties of Chemically Characterized Essential Oils Extracted from Mentha longifolia: In Vitro and In Silico Analysis. Plants 12, 3783. https://doi.org/10.3390/plants12213783
Vanden Broeck, A., Lotz, C., Ortiz, J., Lamour, V., 2019. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex. Nat. Commun. 10, 4935. https://doi.org/10.1038/s41467-019-12914-y
Wang, X., He, L., Huang, Z., Zhao, Q., Fan, J., Tian, Y., Huang, A., 2023. Isolation, identification and characterization of a novel antimicrobial peptide from Moringa oleifera seeds based on affinity adsorption. Food Chem. 398, 133923. https://doi.org/10.1016/J.FOODCHEM.2022.133923
Wanner, J., Schmidt, E., Bail, S., Jirovetz, L., Buchbauer, G., Gochev, V., Girova, T., Atanasova, T., Stoyanova, A., 2010. Chemical Composition, Olfactory Evaluation and Antimicrobial Activity of Selected Essential Oils and Absolutes from Morocco. Nat. Prod. Commun. 5, 1349–1354. https://doi.org/10.1177/1934578X1000500903
Weiss, E.I., Shalhav, M., Fuss, Z., 1996. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Dent. Traumatol. 12, 179–184. https://doi.org/10.1111/J.1600-9657.1996.TB00511.X
Wijesundara, N.M., Lee, S.F., Cheng, Z., Davidson, R., Rupasinghe, H.P.V., 2021. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci. Rep. 11, 1487. https://doi.org/10.1038/s41598-020-79713-0
Yang, L., Zhan, C., Huang, X., Hong, L., Fang, L., Wang, W., Su, J., 2020. Durable Antibacterial Cotton Fabrics Based on Natural Borneol-Derived Anti-MRSA Agents. Adv. Healthc. Mater. 9, 2000186. https://doi.org/10.1002/ADHM.202000186
Yu, W., MacKerell, A.D., 2017. Computer-Aided Drug Design Methods BT - Antibiotics: Methods and Protocols, in: Sass, P. (Ed.), . Springer New York, New York, NY, pp. 85–106. https://doi.org/10.1007/978-1-4939-6634-9_5
Zhang, H., Shen, Y., Ruse, N.D., Haapasalo, M., 2009. Antibacterial Activity of Endodontic Sealers by Modified Direct Contact Test Against Enterococcus faecalis. J. Endod. 35, 1051–1055. https://doi.org/10.1016/J.JOEN.2009.04.022

Downloads
Published
Data Availability Statement
Data will be available upon request from the corresponding author.
Issue
Section
License
Copyright (c) 2025 El abdali Youness, Jalte Meryem, Nissmouya Amal, Zahir Ilham, Bouia Abdelhak (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.