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Abstract  

Several bioactive phytochemicals found in herbal products, particularly in essential oils (EOs), are proved to be vital in the 

prevention of chronic illnesses including infectious and metabolic disorders. The aim of this study was, firstly to identify the 

phyto-chemical composition and to assess, in vitro, the antioxidant and antimicrobial properties of Mentha pulegium EO, and 

secondly, to evaluate its potential antidiabetic effects, in silico. GC-MS analysis was employed for the examination of EO 

phytochemical composition. The antioxidant capacity was evaluated by in vitro tests against free radicals. The antimicrobial 

efficacy against pathogenic bacteria as well as Candida albicans was evaluated qualitatively and quantitatively. By the use of 

molecular docking antidiabetic potential of pennyroyal EO was also tested. Pulegone (72.05%) was the major component of M. 

pulegium EO, followed by 8-hydroxy-p-menthan-3-one (5.97%) and imidazolidine (3.23%). Pennyroyal EO displayed a notable 

antioxidant potential, as assessed by FRAP and DPPH assays, marking an EC50 and IC50 values of 26.500 ± 0.200 mg/mL and 

054.630 ± 1.350 mg/mL, correspondently. The examined EO also possessed a total antioxidant capacity of 52.610 ± 4.734 mg 

AAE/g EO. The findings of antimicrobial test showed a notable efficacity of M. pulegium EO against S. aureus (MIC = MBC = 

3.058 mg/mL), E. coli (MIC = 6.076 mg/mL / MBC = 6.125 mg/mL) and C. albicans (MIC = MBC = 3.063 mg/mL). Regarding 

the antidiabetic potential, in silico analysis identified imidazolidine as the most active molecule against the α-glucosidase (PDB: 

5NN8) and the α-amylase (PDB: 1B2Y) enzymes marking glide scores of -8.393 and -7.172 kcal/mol, correspondently. These 

findings suggest that the EO derived from Moroccan M. pulegium holds promise as a potent natural remedy against free radicals 

and resistant pathogenic microbes. Moreover, it shows potential as a promising solution for managing diabetes disorders. 
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1. Introduction

For centuries, diabetes mellitus (DM) poses a significant 

problem for impoverished areas as well as for affluent 

nations. DM is a persistent metabolic condition distinguished 

by prolonged hyperglycemia resulting from compromised 

insulin production and/or malfunctions in insulin 

functionality. It disrupts the fat metabolism, carbohydrates, 
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and proteins (Czech, 2017). According to the World Health 

Organization, there was a 3% rise in premature mortality due 

to diabetes from 2000 to 2019. Moreover, in 2019, the 

number of fatalities attributed directly to diabetes and kidney 

disease due to diabetes was 2 million (WHO, 2023). 

A serious concern in modern times is oxidative stress, a state 

that has the potential to impact healthy cells and transform 

them into cancerous ones due to the accumulation of a 

significant quantity of reactive oxygen species (ROS) (EL 

Abdali et al., 2023). In parallel, the issue of antimicrobial 

resistance and the illnesses it causes poses a significant 

public health issue. This situation leads to a critical situation 

in numerous healthcare facilities worldwide and contributes 

to a high occurrence of nosocomial diseases (EL Moussaoui 

et al., 2021). Nevertheless, these health challenges can be 

mitigated through the utilization of medicinal plants and 

their derivatives which exhibit antioxidant and antimicrobial 

properties, and serve as promising alternatives to synthetic 

antioxidants and traditional antibiotics (El Abdali et al., 

2023b; Wang et al., 2023). 

The oxidative stress constitutes a significant risk factor for 

the development of type 2 diabetes, and the mechanisms 

underlying this relationship involve hormonal and 

inflammatory disorders that favor also insulin resistance 

(Fernández-Sánchez et al., 2011; Jaradat et al., 2024). In 

addition, diabetes, together with its correlated 

hyperglycemia, intensifies oxidative stress, consequently 

creating a favorable milieu for the progression of cancer 

(Giri et al., 2018). Moreover, uncontrolled hyperglycemia 

and tumor growth caused by oxidative stress can 

compromise the immune system's function and effectiveness 

according to recent investigations (Akash et al., 2020). 

Consequently, individuals with these conditions are more 

prone to being infection by a variety of opportunistic 

pathogens. The complex interconnections between oxidative 

stress, diabetes, and microbial infections emphasize the 

necessity of comprehensive health management strategies. 

This also underscores the significance of lifestyle 

modifications and therapeutic interventions that focus on 

connected pathways associated with these interrelated 

conditions. 

In the context of these multifactorial diseases, the use of 

herbal remedies based on aromatic plants and their 

derivatives presents a complementary therapeutic approach. 

Numerous aromatic plants, known for their hypoglycemic 

and antioxidant properties, are incorporated into diets to help 

regulate blood sugar levels and reduce the risk of 

complications related to diabetes and also obesity (Paul et 

al., 2022). In addition to their implication in the treatment of 

microbial infections (El Abdali et al., 2021; EL Moussaoui et 

al., 2021), medicinal plants represent a highly effective 

reservoir of biologically active compounds that possess anti-

free radicals and anticancer properties with greater efficacy 

for controlling oxidative stress and cancer therapy (Jain et 

al., 2016). Belonging to this panoply of medicinal plants, 

Mentha pulegium L. (Lamiaceae), commonly known as 

pennyroyal, is a prominent aromatic herb originating from 

North Africa, Europe, and the Middle East (Domingues and 

Santos, 2019). Extracts obtained from this herb, such as EOs, 

have exhibited properties including carminative, anti-

inflammatory, antioxidant, antispasmodic, and antimicrobial 

effects (Bouyahya et al., 2017; Nickavar and Jabbareh, 

2018). Nonetheless, there exists a scarcity of information and 

investigation concerning the biological activities of EO 

derived from Moroccan chemotypes of M. pulegium, 

particularly in relation to their impact on enzymes and 

specific proteins associated with diabetes and related 

disorders. 

In light of the close correlations between diabetes, oxidative 

stress and also microbial infections, this study was carried 

out using a complementary therapeutic approach. 

Specifically, the objectives were to analyze the chemical 

composition of M. pulegium EO and assess its, in vitro, 

antioxidant and antimicrobial activities against three 

pathogenic microbial strains. Second, the study used 

molecular docking analysis to examine the inhibitory actions 

of the same EO on the α-glucosidase and α-amylase 

enzymes, in order to assess its antidiabetic activity in silico. 

2. Materials & Methods 

2.1. Plant material 

In the research conducted, Mentha pulegium L. leaves 

collected in the Taounate (Kariat Ba Mohamed) area of 

Morocco in May 2022 were utilized as the plant material. 

The plant samples were identified by laboratory botanists 

through consultation of different botanical references and 

plant directories. Following this, the samples underwent a 

cleaning process prior to being left to air-dry in the shade for 

a duration of 15 days before commencing the extraction 

process. 

2.2. EO extraction 

A mass of 100 grams of dried M. pulegium leaves underwent 

hydrodistillation for a duration of 3 hours utilizing a 

Clevenger-type apparatus utilizing 800 mL of distilled water, 

following the established procedure as detailed in the 

European Pharmacopoeia (EDQM., 2004). The resulted EO 

was subsequently dehydrated using anhydrous sodium 

sulfate and afterwards conserved in dark conditions at 

temperatures of 4-5 °C until further testing and analysis. The 

EO yield was calculated as a percentage (v/w) based on the 

weight of the dried plant material (El Abdali et al., 2023a). 

2.3. EO Chromatographic analysis: 

The current study utilized GC-MS to accurately analyse and 

determine the various plant chemical phytocomponents 

present in the EO extracted from M. pulegium. Utilizing a 

GC Agilent-Technologies 6890 N Network gas-phase 

chromatograph (Little Falls, California, USA), the analysis 

was performed using an HP-5MS capillary column with the 

following specifications: 30.00 m × 0.250 mm × 0.250 µm 

of film thickness. The flame ionization detector (FID) 
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utilized in this research was set at a temperature of 260.0 °C. 

A 1.00 μL volume was injected using a split mode at 250.0 

°C. During the chromatographic process, helium gas was 

utilized as the carrier and programmed at 1.00 mL/min in 

flow rate. The temperature of the column was set to increase 

at a rise of 0.5 °C/min, starting from 35 °C and reaching 

250.0 °C. Kovats retention indices were meticulously 

employed to identify the EO components by comparing them 

to a homologous set of n-alkanes. Furthermore, the NIST MS 

Library (v. 2.0) was carefully utilized as a mass spectral 

database to improve the accuracy of compound identification 

(Adams, 2007; Aimad et al., 2022). 

2.4. Essential oil's in vitro antioxidant properties 

Three distinct assays were conducted to evaluate the 

antioxidant potential of the investigated M. pulegium EO in 

a laboratory: the reducing power (FRAP) test, the free DPPH 

radical scavenging test, and the total antioxidant capacity 

(TAC) test. 

2.4.1. Scavenging free DPPH radical test 

The DPPH assay was performed in accordance with the 

modified procedure outlined by (Moattar et al., 2016). A 

mixture comprising 0.1 mL of pennyroyal EO prepared in 

methanol at different concentrations (0.1–100 mg/mL) added 

to 0.75 mL of a 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

solution (0.1 mM) dissolved in methanol, was prepared. 

After being incubated during 30 minutes at room 

temperature, the solution’s absorbance was noted at 517 nm 

and compared to that of a negative control containing 

methanol in lieu of the EO studied. The experiment was 

repeated using butylated hydroxytoluene (BHT) antioxidant 

serving as a standard reference. After that, the EO-induced 

DPPH radical inhibition rate was determined accordingly: 

DPPH inhibition (%) = [1−(A/A0)] × 100                 (1) 

A and A0 represent the observed absorbance values of the 

solution of DPPH when the sample is present and absent (as 

the negative control), respectively. 

2.4.2. Ferric reducing assay 

The ferric reducing antioxidant power (FRAP) assay 

followed a standard protocol as previously described 

(Moattar et al., 2016). This involved adding 0.5 mL of 

potassium ferricyanide solution [K3Fe(CN)6] at 1% and the 

same volume of phosphate buffer solution (0.2 M; pH = 6.6) 

to 0.1 mL of increasing concentrations of the studied EO, 

ranging from 0.1 to 25.0 mg/mL in methanol. After 

incubating the mixture during 20 minutes at a temperature of 

50°C using a water bath, 0.5 mL of 10% trichloroacetic acid 

was added to acidify it. Subsequently, the resulting mixture 

was supplemented with 0.1 mL of 0.1% FeCl3 and 0.50 mL 

of distilled water. The solution’s absorbance at 700 was then 

noted after using a blank. The obtained results were analysed 

and expressed as the 50% effective concentration (EC50), 

derived from the resulting graph, indicating the antioxidant 

concentration required to achieve 0.5 nm in absorbance. 

Additionally, conventional antioxidants such as BHT and 

quercetin were assessed using the same experimental 

procedure. 

2.4.3. Total antioxidant capacity assay 

A reagent solution consisting of 1 mL of 0.6 M sulfuric acid, 

28 mM sodium phosphate, and 4 mM ammonium molybdate 

was prepared. To this solution, 25 µL of EO was added. The 

reaction mixture was then incubated during 90 min at 95°C. 

Subsequently, the absorbance at 695 nm was measured 

following the method described by (Maškovič et al., 2012). 

The total antioxidant capacity was determined utilizing a 

previously calibration curve prepared using ascorbic acid 

and expressed as mg of ascorbic acid equivalent relative to 

one gram of EO (mg AAE/g EO). The experimental protocol 

was triplicated for reliability. 

2.5. Essential oil's antimicrobial properties 

2.5.1. Microbial strains, growth medium and inoculums 

standardization 

The Gram-negative Escherichia coli ATCC 25922, and the 

Gram-positive Staphylococcus aureus ATCC 29213, in 

addition to Candida albicans ATCC 10231, were used to 

assess the antimicrobial activity of pennyroyal EO. The 

examined pathogenic microbial strains were sourced from 

the laboratory of microbiology belonging to the medicine 

and pharmacy faculty located in Fez (Morocco). Numerous 

investigations have reported that the microbial strains under 

investigation are resistant to multiple drugs (EL Moussaoui 

et al., 2021; Mulani et al., 2019).  

Bacterial strains were grown on Müller-Hinton Agar (MHA) 

and Müller-Hinton Broth (MHB), whereas C. albicans was 

cultured on Sabouraud agar (SB) (EL Abdali et al., 2023). 

The diverse microbial strains were standardized and 

inoculated according to the procedure outlined for bacterial 

and fungal strains (CLSI, 2018, 2008). Ampicillin (AMP) 

and fluconazole (FLU) were employed as standard antibiotic 

and antifungal, respectively. Standards underwent 

sterilization through filtration. 

2.5.2. Disk diffusion method 

The antimicrobial activity was examined qualitatively 

utilizing the disk diffusion technique, which is based on the 

Kirby-Bauer method with minor adaptations (Furtado and 

Medeiros, 1980; Kiehlbauch et al., 2000). This technique 

was employed in order to calculate, in mm, the diameter of 

the inhibition zone resulting from the EO's impact on the 

microbial strain. To achieve this, circular disks of Whatman 

number 1 paper, measuring 0.6 cm, were infused with EO 

(20.00 μL), FLU (5.00 mg/mL) and AMP (0.50 mg/mL). 

Subsequently, these disks were then positioned onto the 

surface of the agar culture medium's surface within a Petri 

dish that had been inoculated with standardized suspensions 

of bacterial strains (1-5 × 108 CFU/mL) and C. albicans 

strain (1–5 × 106 CFU/mL). Finally, the antimicrobial 

efficacy of the EO studied was evaluated following a 24-hour 

incubation period at 30°C concerning yeast and 37 °C in the 

case of bacteria. 
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2.5.3. Evaluation of the minimal inhibitory, bactericidal and 

fungicidal concentrations of EO 

The microdilution method, as described previously, was 

employed to determine the minimum inhibitory 

concentration (MIC) (Agour et al., 2022; El Abdali et al., 

2023a). Dimethyl sulfoxide (DMSO) was used to dilute both 

the EO and the standards. Initially, 50 μL of the culture 

medium was dispensed into all microplate wells. 

Subsequently, the first microplate wells were loaded with 50 

μL of the solution containing EO and standards. 

Microdilution was then performed by transferring a volume 

of 50 μL from the initial well to the last, except the positive 

growth control. Following this, 50 μL of bacterial and fungal 

suspensions was inoculated into all wells except the negative 

growth control. After a 24-hour incubation period at 30°C for 

C. albicans and 37°C for the bacterial strains, microbial 

growth was indicated by a white microbial spot beneath the 

wells. Confirmation was conducted using the colorimetric 

method, with the addition of 10 μL of 2,3,5-

triphenyltetrazolium chloride (TTC). The MICs values of the 

EO, FLU and AMP were determined as the lowest 

concentrations of the samples that stopped microbial growth. 

Additionally, the minimum fungicidal (MFC) and 

bactericidal (MBC) concentrations were determined. Briefly, 

following a 24-hour incubation period, the inoculum from 

the three juxtaposed MIC wells was swabbed and transferred 

to evaluate the growth of microorganisms on the non-

selective agar surface. The concentrations at which 99.9% of 

the initial inoculum was eliminated were identified as MBC 

and MFC (Balouiri et al., 2016). 

2.6. Molecular docking of EO enzymatic inhibition activity 

The current investigation focused on the application of 

computational techniques for analyzing the antidiabetic 

effect of M. pulegium EO. It entailed a thorough examination 

of the inhibition of α-amylase and α-glucosidase enzymes to 

determine its possible potential in managing diabetes. 

2.6.1. Ligand preparation 

For the ligand preparation, an exhaustive compilation of all 

phytocompounds found in M. pulegium EO via GC/MS from 

PUBCHEM was carried out meticulously in the Structure 

Data File (SDF) format. Following this, a comprehensive 

pretreatment phase was applied to these various ligands for 

the purpose of docking calculations utilizing the LigPrep tool 

within the Schrödinger Software program (v. 11.5). For this 

specific approach, the OPLS3 force field was employed, and 

a total of 32 stereoisomers for every ligand were generated, 

and the ionization states at pH 7.00 ± 2.00 were determined 

(El Abdali et al., 2023b; Lafraxo et al., 2022). 

2.6.2. Target protein preparation 

The preparation of proteins involved obtaining three-

dimensional crystal structures of α-amylase (PDB ID: 1B2Y) 

and α-glucosidase (PDB ID: 5NN8) antidiabetic enzymes as 

documented by (Ouahabi et al., 2023). The structures of 

investigated enzymes were generated from the Protein Data 

Bank (PDB format), and meticulously constructed and 

improved utilizing the Protein Preparation Wizard integrated 

in Schrödinger-Maestro (v. 11.5). The optimization 

procedure was carried out through the addition of hydrogen 

atoms (H), finalizing bond orders, elimination of water 

molecules, determination of hydrogen bonds, adjustment of 

receptor atom’s potential, and reduction of energy employing 

the OPLS3 force field (Amrati et al., 2023). The inception of 

the receptor grid was commenced by triggering the initiation 

of the creation module, in which a specific ligand atom was 

chosen, resulting in the creation of a default grid box. 

Subsequently, the ligands were connected to the grid box 

resulted from the studied protein utilizing the Standard 

Precision method. 

2.6.3. In silico test 

The implementation of the standard precision, flexible ligand 

docking protocol was conducted using the Glide module 

within the Schrödinger-Maestro software (v. 11.5). The 

procedure entailed the incorporation of penalties for non-

cis/trans amide bonds. Specific parameters governing ligand 

atoms, including the partial charge cutoff in addition to the 

Van der Waals scaling factor, were carefully calibrated to 

0.15 and 0.80, correspondently. Then, the resultant score, 

derived from energy-minimized conformations, was 

reported as a Glide score. The most favorable docking 

conformation for the studied ligand was determined as the 

one displaying the lowest Glide score value (Amrati et al., 

2023). This rigorous computational methodology aimed to 

elucidate the potential molecular interactions between M 

pulegium EO compounds and α-amylase and α-glucosidase, 

offering valuable insights into their antidiabetic mechanisms 

of action. 

2.7. Statistical Analysis 

The software utilized for the calculation of mean values and 

standard deviations in this study was GraphPad Prism 8, 

developed by Microsoft (California, USA). Statistical 

comparison of data from all tests was conducted through 

ANOVA (one-way), followed by using a Tukey-test. 

Significance of differences was determined at a level of 

p<0.05. 

3. Results & Discussion  

3.1. Essential oil yield 

The leaves of M. pulegium obtained from Kariat Ba 

Mohamed in Morocco yielded a clear yellow EO with a 

characteristic scent, amounting to 2.25% (v/w). It is widely 

recognized that various factors such as plant species, 

geographical location, and plant part used can impact the EO 

yield. Additionally, the time of collection, as well as the 

drying and extraction techniques employed, play a role 

(Ahmed et al., 2018; Rezouki et al., 2021). For example, 

studies by Aljaiyash et al., Amalich et al., and Allali et al. 

reported different yields of EO from M. pulegium leaves 

from various regions, with percentages of 1.78%, 5.20%, and 

2.14%, respectively (Ahmed et al., 2018; Aimad et al., 2021; 

Amalich et al., 2024). The pennyroyal chemotypes described 
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in these studies are all collected from different geographic 

regions than the plant under study. 

3.2. Essential oil’ phytochemical composition 

The EO derived from M. pulegium was subjected to a 

comprehensive analysis and characterization of its chemical 

composition using the GC-MS technique. The components 

identified are listed in Table 1. Results showed that a total of 

thirteen compounds were detected in the pennyroyal EO 

under investigation, collectively constituting 97.74% of the 

overall essence. The primary compounds found included 

pulegone (72.05%), 8-hydroxy-p-menthan-3-one (5.97%), 

imidazolidine (3.23%), and piperitenone (3.02%). Notably, 

the monoterpenes were the predominant constituents of the 

examined EO, making up 83.85% of the total composition. 

Other compounds were present at levels below 4%. In a 

recent study on the phytochemical composition of M. 

pulegium EO, five significant components were identified, 

with pulegone (68.11%), l-menthone (8.83%), limonene 

(2.90%), iso-pulegone (2.69%), and iso-menthone (1.48%) 

being the main components (Azadi et al., 2023). 

Furthermore, M. pulegium EO contains various elements 

such as pulegone, piperitenone, menthone, isomenthone, α-

terpineol, and oxygenated monoterpenes. These 

phytochemicals exhibit varying concentrations, with 

pulegone ranging from 40.98% to 76.35%, piperitenone 

fluctuating between 3.82% to 27.8%, and menthone present 

in concentrations of 6.9% to 21.16% as indicated by several 

studies (Aimad et al., 2021; Bouyahya et al., 2017; Casiglia 

et al., 2017; Messaoudi et al., 2021). 

These variations in compound amounts and composition of 

EO are likely influenced by various factors such as, selection 

criteria (young, mature, disease-free, parasite-free, etc.), 

method of leaf preservation prior to drying, developmental 

stage of the leaves, methods used for extraction, timing of 

harvest, seasonal changes, environmental conditions, and 

daily biological rhythms (El Abdali et al., 2023b; Justus et 

al., 2018). It is important to note that numerous compounds 

found in pennyroyal EO have bioactive properties. For 

instance, pulegone has been shown to exhibit diverse 

pharmacological effects such as antioxidant, antimicrobial, 

anti-feeding, antifungal, antiviral, and pesticide properties 

(Dhingra and Chopra, 2023). Likewise, piperitone provides 

improved treatment outcomes for people with diabetes, 

obesity, arthritis, metabolic syndrome, multiple myeloma, 

oral cancer, Alzheimer's disease, Parkinson's disease, breast 

cancer, stroke, heart disease, kidney disease, inflammatory 

disorders, and rhinopharyngitis (Tripathi et al., 2022). 

Menthone was also recognized for its numerous 

pharmacological attributes such as antifungal, antibacterial, 

antipruritic, anticancer, and analgesic effects, in addition to 

serving as an efficient fumigant (Kamatou et al., 2013). The 

complex chemical composition of M. pulegium EO 

highlights its potential as a rich source of bioactive 

substances, further emphasizing its importance in diverse 

applications within the fields of pharmacology and natural 

product research. 

3.3. In vitro essential oil’ antioxidant activity 

Oxidative stress is a potentially harmful effect of reactive 

species radicals (ROS) acting on living organism 

components and cells (Circu and Aw, 2010). The potential of 

a number of EOs to scavenge reactive species and counteract 

oxidative stress has been investigated (Leyva-López et al., 

2017). The antioxidant potential of M. pulegium EO was 

examined in the current study using an in vitro multi-assay 

approach that included phosphomolybdenum TAC, FRAP, 

and DPPH inhibition assays. The collected results are 

displayed in Table 2 and Figure 1. Both pennyroyal EO and 

BHT demonstrated increased DPPH radical scavenging 

activity in depending on the dose, as illustrated in Figure 1. 

Additionally, data of Table 2 shows that M. pulegium EO's 

half maximum inhibitory DPPH radical concentration (IC50) 

was 54.630 ± 1.350 mg/mL. Comparatively, ANOVA 

analysis data showed that the BHT's IC50 value (0.122 ± 

0.021 mg/mL) was statistically (p < 0.001) lesser than that of 

the investigated EO's. 

 

Table 1: Phytochemical composition of the M. pulegium EO. 

N° RT MW Compounds Molecular 

formula  

Content (%) 

1 5.205 126 2-methyl-1,3-Cyclohexanedione C7H10O2 0.63 

2 6.405 152 Isopulegone C10H16O 2.21 

3 6.779 208 2,2 Dicyclohexylpropane C15H28 2.38 

4 6.879 140 Dimethyldisopropenylsilane C8H18Si 0.86 

5 6.980 152 Pulegone C10H16O 72.05 

6 7.056 154 Menthone-D1 C10H18O 0.60 

7 7.152 72 Imidazolidine C3H8N2 3.23 

8 7.345 170 8-hydroxy-p-menthan-3-one C10H18O 5.97 

9 7.465 168 1-Ethyl-3-methyl-2-(2 methylpropylidene) Imidazolidine C9H18N2 1.75 

10 7.767 150 Piperitenone C10H14O 3.02 

11 7.823 98 2-Cyclohexen-1-ol C6H10O 1.45 

12 8.899 166 Mint Furanone 2 C10H14O2 1.21 

13 9.236 154 3 –(3-thienyl)-2 propenoic acid C7H6O2S 2.38 

 Total (%) 97.74 
RT = Retention time; MW = Molecular weight. 
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Figure 1: Anti-free DPPH radical scavenging activity of M. pulegium EO and BHT. 

Table 2: Antioxidant activities of M. pulegium EO and standards (means ± SD). 

 DPPH 

(IC50 mg/mL) 

FRAP 

(EC50 mg/mL) 

TAC 

(mg AAE/g EO) 

Essential oil 54.630 ± 1.350a 26.500 ± 0.200a 52.610 ± 4.734a 

BHT 0.122 ± 0.021b 0.362 ± 0.010b 48.530 ± 1.250a 

Quercetin - 0.032 ± 0.003b 29.470 ± 1.246a 

Different letters in each column correspond to statistically different values (p < 0.05). 

With an EC50 value of 26.500 ± 0.200 mg/mL (Table 2), the 

antioxidant propriety of the investigated pennyroyal EO was 

also assessed utilizing the FRAP test. This result indicates 

that EO had the potential to transform ferric iron (Fe3+) to 

reduced ferrous iron (Fe2+), but with an effectiveness 

statistically (p<0.05) compared to BHT and quercetin 

standards, which had EC50 values of 0.362 ± 0.010 mg/mL 

and 0.032 ± 0.003 mg/mL, correspondently. 

By using the phosphomolybdenum assay, the pennyroyal 

EO’s total antioxidant capacity (TAC) was also evaluated. In 

the presence of an antioxidant, molybdenum Mo (VI) present 

as molybdate ions at an acidic pH is reduced to molybdenum 

Mo (V), creating a green phosphate/Mo(V) complex (Prieto 

et al., 1999). In relation to the obtained results (Table 2), the 

TAC of M. pulegium EO in comparison to conventional 

antioxidants (BHT and quercetin) was 52.610 ± 4.734 mg/g, 

48.530 ± 1.250 mg/g, and 29.470 ± 1.246 mg/g, 

correspondently, measured in ascorbic acid equivalents (mg 

AAE/g EO). 

Our findings are consistent with previous studies that have 

also shown M. pulegium EO to possess antioxidant 

properties (Aimad et al., 2021; Bouyahya et al., 2017; 

Dehghani et al., 2018; Messaoudi et al., 2021). Used in vitro 

tests, a recent research found that the EO extracted from M. 

pulegium in a different location of Morocco has notable 

antioxidant activity, with an IC50 of 7.659 mg/mL in the 

DPPH scavenging assay and 583.066 mg AAE/g EO in the 

TAC assay (Aimad et al., 2021). In another work examining 

the antioxidant activity of the EO of a different M. pulegium 

chemotype, a higher DPPH scavenging IC50 value (1.027 

mg/mL) was discovered (Dehghani et al., 2018). 

Additionally, Messaoudi et al. (2022) found a significant 

antiradical potential of the EO derived from the Algerian M. 

pulegium both in the DPPH scavenging test (IC50 = 7428.5 

µg/mL) and ABTS test (25 682.7 µg/mL) (Messaoudi et al., 

2021). Likewise, another EO of M. pulegium investigated 

recently, exhibited significant reducing and inhibitory 

capacities by marking IC50 values of 58.27 ±2.72 and 

321.41 ± 2.53 µg/mL in the DPPH scavenging and FRAP 

tests, correspondently, when compared with ascorbic acid 

and Trolox (Bouyahya et al., 2017). It’s important to note that 

antioxidant activity can vary depending on the specific 

composition of the EO, which can be influenced by several 

factors such as the plant’s growth conditions, extraction 

techniques, and harvest time (Tit and Bungau, 2023).  

EOs possess a variety of biological and chemical properties 

due to their composition of many volatile and semi-volatile 

phytocompounds possessing varying polarity and multiple 

functional groups. These attributes vary according to the test 

and method used (El Abdali et al., 2023b). The majority of 

investigations on the antioxidant capacity of pennyroyal EO 

have linked this activity to the EO's conjugated terpene 

components, such as piperitenone, menthone, and pulegone, 

which either act alone or in synergy to neutralize free 

radicals. A multitude of studies and experiments have 

revealed that these monoterpene compounds possess 
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significant antioxidant properties (Baccouri and Rajhi, 2021; 

Dhingra and Chopra, 2023; Wojtunik et al., 2014). In 

practice, it is expected that the many pathways by which EOs 

affect oxidative stress will determine, at least in part, their 

antioxidant qualities. Several mechanisms under 

investigation are: the capacity to scavenge free radicals, the 

regulation of anti-oxidant enzymes (e.g. superoxide 

dismutase), and the regulation of pro-oxidation (Gonzalez-

Burgos and Gomez-Serranillos, 2012; Leyva-López et al., 

2017). Furthermore, a recent study reported that, the amount 

of phenolic compounds, the phenol's reaction activity 

towards chain-carrying peroxyl radicals, as well the degree 

of stability of the phenoxyl radical generated in the reaction 

are the main factors that determine the antioxidative 

effectiveness of plant extracts (Ćavar et al., 2013). 

Generally, EOs, including that of M. pulegium, contain 

various bioactive compounds. These phytochemicals can act 

as free radical scavengers, reducing agents, pro-oxidant 

inactivators, and radical species quenchers (Singh and 

Maurya, 2024). Additionally, some natural compounds, 

including EOs, may upregulate certain antioxidant enzymes 

or downregulate one or more enzymes involved in free 

radical generation (Amorati et al., 2013). Considering all of 

this, our findings as well as those of other research 

corroborate pennyroyal EO's ability to prevent and 

counteract the harmful effects of free radicals. 

3.4. Essential oil’ antimicrobial potential 

The antimicrobial potential of M. pulegium EO was 

evaluated, in vitro, utilizing the microdilution method to 

determine the minimal inhibitory (MIC), fungicidal (MFC) 

and bactericidal (MBC) concentrations (Figure 2), as well 

the agar diffusion test, which examined qualitative results 

(Table 3). The present study's evaluated pathogenic 

microbial strains, namely: C. albicans, E. coli and S. aureus, 

which are considered community and hospital acquired 

infections and belong to the most prevalent pathogens to 

acquire multidrug resistance (Chouhan et al., 2017; EL 

Moussaoui et al., 2021; Mulani et al., 2019). 

The growth inhibition zone diameter (expressed in mm) 

exhibited by the studied EO was used to express the results 

that are displayed in Table 3. For all examined microbial 

strain, M. pulegium EO shown a significant growth 

inhibitory activity with various inhibition zone diameters. 

Gram (+) S. aureus bacteria showed the highest sensitivity to 

pennyroyal EO, measuring 22.00 ± 0.57 vs Gram (-) E. 

coli's 15.66 ± 0.66 mm. Otherwise, the growth of the C. 

albicans fungal strain was stopped by 13.50 ± 0.28 mm after 

application of the investigated EO. The EO data 

are slightly lower than those of conventional antimicrobials.

Table 3: Inhibition zone diameter (expressed in mm) of M. pulegium EO tested on pathogenic microbial strains  
(means ± SEM). 

 Inhibition Diameters (mm) 

E. coli 

(ATCC 25922) 

S. aureus 

(ATCC 29213) 

C. albicans 

(ATCC 10231) 

Pennyroyal EO 15.66 ± 0.66b 22.00 ± 0.57b 13.50 ± 0.28b 

Ampicillin 24.50 ± 0.76a 32.33 ± 1.48a - 

Streptomycin - 9.61 ± 1.20c - 

Fluconazole - - 20.83 ± 1.30a 

Inhibition zone includes disc diameter (6 mm); Different letters in each column correspond to statistically different values (p<0.05). 
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Figure 2: Minimal inhibitory (MIC) and minimal fungicidal/bactericidal concentrations (MFC/MBC) values (mg/mL) 

of EO extracted from M. pulegium against microbial strains.
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The results of MIC, MBC and MFC evaluating the 

quantitative antimicrobial effect of M. pulegium EO are 

represented in Figure 2. The data obtained confirm the high 

sensitivity of S. aureus to the pennyroyal OE with a low MIC 

= MBC = 3.058 mg/mL vlaues, followed by C. albicans with 

the same MIC and MFC values of 3.063 mg/mL. The E. coli 

bacterial strain was the most resistant to the studied EO, with 

MIC and MBC values of 6.076 and 6.125 mg/mL, 

respectively. Streptomycin has recorded a MIC value higher 

than that of M. pulegium EO when tested against S. aureus. 

Actually, M. pulegium EO has attract considerable interest to 

combat resistant Gram (+) and Gram (-) bacteria and 

pathogenic fungus (El Hassani, 2020). Our study findings are 

in agreement with those reported in recent research, when M. 

pulegium EO exhibited remarkable antibacterial action 

against ten bacterial strains, and marking highest inhibition 

zone diameters, especially against P. mirabilis (28 ± 1.32 

mm) and B. subtilis (30 ± 1.43 mm). The same EO, against 

Gram (+) bacteria, showed significant activity when tested 

on S. aureus MBLA (MIC = MBC = 0.25% v/v) and B. 

subtilis 6633 (MIC = MBC = 1% v/v). While against Gram 

(-) bacteria, the EO had a remarkable antibacterial effect 

against P. mirabilis (MIC = 0.5% v/v) and E. coli K12 (MIC 

= 0.5% v/v) (Bouyahya et al., 2017). In another study, EO 

extracted using hydro distillation from wild M. pulegium 

collected from Algeria exhibited strong antibacterial activity 

against Gram (+) and Gram (-) pathogenic bacteria including 

S. aureus, B. subtilis, P. aeruginosa, and E. coli. The 

inhibition zone diameters ranged from 16.67 mm (P. 

aeruginosa) to 37.33 mm (S. aureus). The MIC values varied 

from 1 to 20 µL/mL, while the MBC values varied from 2 to 

20 µL/mL. The same EO exhibited an antifungal effect 

against C. albicans, marking 11 mm in inhibition zone 

diameter (Messaoudi et al., 2021). Recent research on 

another Moroccan chemotype of pennyroyal, collected from 

the Ouazzane region, revealed that the extracted EO 

possessed antimicrobial activity against B. subtilis, E. coli, 

and S. aureus. The diameters of the inhibition zones ranged 

between 10.33 to 25 mm, while the MIC values varied from 

0.704 µg/mL for E. coli to 2.812 µg/mL for B. subtilis. The 

same study found that the studied EO was effective against 

four different strains of fungus, namely C. albicans, F. 

oxysporum, A. flavus, and A. niger, with inhibition rates 

ranging from 23% for C. albicans to 100% for A. niger and 

MIC values between 11.25 and 22.50 µg/mL (Aimad et al., 

2021).  

Different antimicrobial reactions were observed by M. 

pulegium EO on the growth of the investigated fungal and 

bacterial strains in this research and other ones. This may 

allow for the diverse mechanisms of action of certain EO’s 

compounds or the more efficient counteraction of the effects 

of M. pulegium oil by particular bacteria through their 

metabolism (Aimad et al., 2021). Strong antimicrobial 

activity against a variety of bacterial and fungal strains, 

including Gram (+) and Gram (-) bacteria and fungi like C. 

albicans, F. oxysporum, A. flavus, and A. niger, has been 

demonstrated for pulegone, which mainly present (72.05 %) 

in our studied EO (Amalich et al., 2016; Duru et al., 2004; 

Farhanghi et al., 2022). This phytochemical has been shown 

to cause damage to bacterial membranes and disrupt the 

structure of their polysaccharides and phospholipids, leading 

to bacterial death (Ez-Zriouli et al., 2022). Menthone, 

another potential component of pennyroyal EO, also 

demonstrated potent antibacterial and antifungal activities 

(Kamatou et al., 2013). This compound has exhibited 

significant antibacterial action against methicillin resistant S. 

aureus by altering bacterial membrane properties and 

integrity. This was achieved through the alteration of 

glycerophospholipids, glycolipids, and sphingolipids, which 

suggested a potential disruption in membrane composition 

and function, and thus contributing to the antibacterial effect 

of menthone against this bacterium (Zhao et al., 2023). 

Moreover, certain research has also stated that piperitone has 

antibacterial properties (Abdolpour et al., 2007; Božovic et 

al., 2015). In summary, the antibacterial properties of 

pennyroyal EO are influenced by the quantity, the 

synergistic/antagonistic effects, and the mechanisms of 

action of its constituents, as well as the susceptibility of the 

microorganisms tested (Ez-Zriouli et al., 2022). 

Generally, the efficacy of EOs against pathogenic microbes 

may be related to the lipophilic nature of the monoterpenes 

they contain. These phytocompounds function by interfering 

with the cytoplasmic membrane of microorganisms, causing 

a reduction in its impermeability to protons and larger ions. 

Disruption of the membrane's integrity not only 

compromises its role as a barrier but also affects its function 

as an enzyme’s platform and energy converter. Nevertheless, 

the specific mechanisms responsible for the antimicrobial 

effects of monoterpenes are still not well-defined (Stringaro 

et al., 2014). In addition, it was also reported that the 

antibacterial action of EOs including that of M. pulegium is 

believed to involve disruption of outer and inner bacterial 

membranes (Chouhan et al., 2017). All things considered, 

our findings and those of others support the antimicrobial 

activity of M. pulegium EO against a range of pathogenic 

bacteria and fungi, and it offers a viable avenue for the 

utilization of natural substitutes to address the issue of 

antibiotic resistance. 

3.5. In silico molecular docking of α-amylase and α-

glucosidase inhibition potentials by EO 

Molecular modeling has emerged as a crucial tool in modern 

research activities, utilizing computer-aided drug design 

(CADD) technologies in order to examine and predicted the 

possible interactions of different components (ligands), 

stable or volatile, like EOs, with molecular targets associated 

with diverse biological activities (Mali et al., 2022). 

Molecular docking allows the computation of the affinity 

energy relative to ligand-protein complexes as well the 
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identification of active sites in three-dimensional structures, 

hence facilitating the in silico hypotheses’ generation 

concerning the mechanism of action relative to a number of 

bioactive compounds (Mali et al., 2022; Yu and MacKerell, 

2017). 

The antidiabetic effects of EOs and extracts derived from 

various Mentha species have been observed and proved in 

vitro and in vivo. These effects were examined in vitro 

through the α-amylase and α-glucosidase enzyme’s 

inhibition capacity (Abdellatief et al., 2017; Agawane et al., 

2019; El Hachlafi et al., 2023; Gülçin et al., 2020; Saqib et 

al., 2022). The observed α-amylase and α-glucosidase 

inhibitory properties of Mentha plants are believed to be 

linked, in part, to the phytochemical compounds found in its 

EOs, such as pulegone and menthone, which are mostly 

found in the EO under investigation (Benabed et al., 2023; 

Revathi et al., 2022). However, the mechanisms through 

which these EOs and extracts regulate or inhibit the 

enzymatic activity associated with diabetes, as reported in 

these studies, remain unclear, rare, or under-researched. 

Therefore, the focus of our research is to computationally (in 

silico) analyse and elucidate the mechanisms of action of M. 

pulegium EO compounds in modulating the enzymatic 

activities related to this biological effect, aiming to validate 

and support the experimental findings reported about the 

antidiabetic propriety. 

DM is associated with a modification in the synthesis of 

insulin by the pancreatic cells, leading to an abnormal 

glucose metabolism (Hosein Farzaei et al., 2015). The 

enzymes α-amylase and α-glucosidase play a crucial role in 

the degradation of carbohydrates and the absorption in the 

intestine. Consequently, the inhibition of these enzymes 

proves to be an effective therapeutic approach in the 

management and prevention of type 2 diabetes (Bouyahya et 

al., 2020). 

Table 4: Docking results of ligands (compounds of M. pulegium EO) in the targeted receptors: α-amylase enzyme 

(PDB: 1B2Y) and α-glucosidase enzyme (PDB: 5NN8). 

Ligands α-amylase α-glucosidase 

1B2Y receptor 5NN8 receptor 

G. score 

(kcal/mol) 

G. emodel 

(kcal/mol) 

G. energy 

(kcal/mol) 

G. score 

(kcal/mol) 

G. emodel 

(kcal/mol) 

G. energy 

(kcal/mol) 

1-Ethyl-3-methyl-2-(2 

methylpropylidene) Imidazolidine 

-4.821 -38.012 -25.56 -5.448 -46.073 -29.624 

2,2 Dicyclohexylpropane -3.54 -22.865 -19.483 -2.93 -18.565 -15.625 

2-Cyclohexen-1-ol -4.343 -25.512 -19.549 -5.16 -29.019 -21.335 

2-methyl-1,3-Cyclohexanedione -3.739 -27.588 -21.991 -4.426 -30.704 -23.711 

3-(3-thienyl)-2 propenoic acid -4.36 -24.219 -18.4 -4.074 -20.896 -14.535 

8-Hydroxy-p-menthan-3-one -4.518 -35.884 -27.788 -4.875 -35.273 -25.344 

Dimethylisopropylsilane -1.908 -14.966 -13.321 -2.401 -17.417 -15.235 

Imidazolidine -7.172 -59.957 -28.484 -8.393 -79.719 -34.41 

Isopulegone -4.059 -24.677 -19.623 -3.82 -26.002 -20.644 

Menthone -4.373 -25.115 -19.259 -4.062 -22.569 -17.881 

Mint Furanone -4.423 -29.474 -22.408 -4.604 -26.567 -20.292 

Piperitenone -4.722 -26.507 -19.976 -4.155 -24.878 -19.333 

Pulegone -4.675 -26.514 -20.1 -3.941 -23.945 -18.975 
 

Within this context, we conducted an assessment of the 

inhibitory potentials on α-amylase and α-glucosidase by M. 

pulegium EO using molecular docking approach. In silico 

evaluation of the antidiabetic activity revealed that 

imidazolidine, piperitenone, and pulegone, constituents of 

M. pulegium EO, exhibited significant inhibitory action 

against α-amylase (PDB: 1B2Y), with glide scores of -7.172, 

-4.722, and -4.675 kcal/mol, respectively (Table 4). 

Likewise, imidazolidine, 2-cyclohexen-1-ol, and 1-ethyl-3-

methyl-2-(2 methylpropylidene) imidazolidine are the 

components of the same EO, which exhibit remarkable 

efficacy against α-glucosidase (PDB: 5NN8), achieving 

glide scores of -8.393, -5.160, and -5.422 kcal/mol, 

correspondingly. 

The 2D and 3D viewers relative to the M. pulegium EO 

docked in the active site of α-amylase (PDB: 1B2Y) revealed 

that imidazolidine established 3 hydrogen bonds with ASP 

197, ASP 300 and GLU 233 residues, and three salt bridges 

with the same residues and a pi-cation bond with residue 

TYR 62 (Figure 3A and 4A). Otherwise, piperitenone 

established a single hydrogen bond with the α-amylase 

enzyme's HIP 305 residue (Figure 3B and 4B), while 

pulegone also formed a single hydrogen bond in contact with 

the same enzymatic residue (Figure 3C and 4C). 

Concerning the α-glucosidase (PDB: 5NN8), imidazolidine 

formed double hydrogen bonds in contact with residues ASP 

518 and ASP 404, and the same time, two salt bridges with 

the same residues in the active site of the studied enzyme 
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(Figure 3D and 4D). Similarly, 2-cyclohexen-1-ol 

established two hydrogen bonds with residues ARG 600 and 

ASP 616 (Figure 3E and 4E). Additionally, 1-ethyl-3-

methyl-2-(2 methylpropylidene) imidazolidine formed a 

single hydrogen bond when it interacted with the ASP 616 

enzymatic residue and also established two salt bridges with 

the residues ASP 518 and ASP 616 (Figure 3F and 4F). 

  

  

  

Figure 3: The 2D viewer of ligands interactions with the enzyme’s active site. Respectively, A, D: Interactions of 

imidazolidine with the active site of α-amylase and α-glucosidase; B, C: Interactions of piperitenone and pulegone with the 

active site of α-amylase; E, F: Interactions of 2-cyclohexen-1-ol and 1-ethyl-3-methyl-2-(2 methylpropylidene) imidazolidine 

with the active site of α-glucosidase. 
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Figure 4: The 3D of ligands interactions with the enzyme’s active site. Respectively, A, D: Interactions of imidazolidine with 

the active site of α-amylase and α-glucosidase; B, C: Interactions of piperitenone and pulegone with the active site of α-

amylase; E, F: Interactions of 2-cyclohexen-1-ol and 1-ethyl-3-methyl-2-(2 methylpropylidene) imidazolidine with the active 

site of α-glucosidase. 

The in silico data obtained provide a comprehensive 

explanation and validation of the experimental antidiabetic 

properties associated with certain phytochemical compounds 

found in EOs derived from Mentha species, as previously 

reported. Additionally, these findings offer valuable insights 

into the potential mechanisms responsible for the modulation 

of antidiabetic enzymatic activity by specific compounds 

present in M. pulegium EO. In fact, the management and 

regulation of blood sugar levels in individuals with type 2 

DM and those at the borderline can be enhanced through the 

inhibition of α-amylase and α-glucosidase enzymes, which 

play a crucial role in carbohydrate digestion. This action has 

the potential to significantly reduce the surge in blood 

glucose levels post meals. The biological impacts that can be 

influenced by plant-derived remedies and specialized diets 

in addressing diabetes are currently gaining fresh scrutiny. 

Within the realm of botanical medicine, a variety of oral 

natural agents and their derivatives have shown remarkable 

hypoglycemic proprieties, offering minimal to no adverse 

secondary effects (Bungau et al., 2023). This was observed 

in this study for M. pulegium EO, which showed promising 

in silico results as an anti-diabetic agent, by inhibiting the 

enzymes involved in this metabolic disorder. It is important 

to note that these current findings need to be validated and 

confirmed by in vivo and in vitro studies as part of further 

research. 

A B 

C D 

E F 
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4. Conclusion  

In conclusion, the obtained outcomes establish that the 

essential oil extracted from Moroccan Mentha pulegium 

exhibits notable antioxidant and antimicrobial 

characteristics. These findings emphasize the potential 

efficacy of this EO as a natural and effective therapeutic 

agent in alleviating the impact of free radicals and addressing 

the growing issue of microbial resistance to pathogenic 

microorganisms. According to computational studies, the 

examined pennyroyal EO could also serve as a natural 

inhibitor of α-amylase and α-glucosidase enzymes. Hence, it 

may offer advantages in managing diabetic disorders; 

nevertheless, further validation through in vivo and in vitro 

experiments is crucial to verifying the results. The observed 

bioactivities are partly linked to the existence of 

monoterpene phytochemicals in the EO. The diverse 

advantages of Mentha pulegium EO, as demonstrated in this 

research, lay a strong groundwork for additional research 

and utilization of its practical applications in combating 

microbial infections and managing diabetes. 
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